
Compiler Design

Mr N.Srinivas

Assistant Professor-CSE

Outline

• Scope of the course

• Disciplines involved in it

• Abstract view for a compiler

• Front-end and back-end tasks

• Modules

Course scope

• Aim:

– To learn techniques of a modern compiler

• Main reference:

– Compilers – Principles, Techniques and Tools, Second

Edition by Alfred V. Aho, Ravi Sethi, Jeffery D.

Ullman

• Supplementary references:

– Modern compiler construction in Java 2nd edition

– Advanced Compiler Design and Implementation by

Muchnick

Subjects

• Lexical analysis (Scanning)

• Syntax Analysis (Parsing)

• Syntax Directed Translation

• Intermediate Code Generation

• Run-time environments

• Code Generation

• Machine Independent Optimization

Grading policy

• Midterm (4-5 points)

• Final exam (7-9 points)

• Home-works (2-3 points)

• Term project (4-5 points)

Compiler learning

• Isn’t it an old discipline?

– Yes, it is a well-established discipline

– Algorithms, methods and techniques are researched and
developed in early stages of computer science growth

– There are many compilers around and many tools to
generate them automatically

• So, why we need to learn it?

– Although you may never write a full compiler

– But the techniques we learn is useful in many tasks like
writing an interpreter for a scripting language,
validation checking for forms and so on

Terminology

• Compiler:
– a program that translates an executable program in one

language into an executable program in another
language

– we expect the program produced by the compiler to be
better, in some way, than the original

• Interpreter:
– a program that reads an executable program and

produces the results of running that program

– usually, this involves executing the source program in
some fashion

• Our course is mainly about compilers but many of
the same issues arise in interpreters

Disciplines involved

• Algorithms

• Languages and machines

• Operating systems

• Computer architectures

Abstract view

• Recognizes legal (and illegal) programs

• Generate correct code

• Manage storage of all variables and code

• Agreement on format for object (or
assembly) code

Compiler
Source

code

Machine

code

errors

Front-end, Back-end

division

• Front end maps legal code into IR

• Back end maps IR onto target machine

• Simplify retargeting

• Allows multiple front ends

• Multiple passes -> better code

Front end
Source

code

Machine

code

errors

IR
Back end

Front end

• Recognize legal code

• Report errors

• Produce IR

• Preliminary storage maps

Scanner
Source

code

IR

errors

tokens
Parser

Front end

• Scanner:
– Maps characters into tokens – the basic unit of syntax

• x = x + y becomes <id, x> = <id, x> + <id, y>

– Typical tokens: number, id, +, -, *, /, do, end

– Eliminate white space (tabs, blanks, comments)

• A key issue is speed so instead of using a tool like
LEX it sometimes needed to write your own
scanner

Scanner
Source

code

IR

errors

tokens
Parser

Front end

• Parser:
– Recognize context-free syntax

– Guide context-sensitive analysis

– Construct IR

– Produce meaningful error messages

– Attempt error correction

• There are parser generators like YACC which
automates much of the work

Scanner
Source

code

IR

errors

tokens
Parser

Front end

• Context free grammars are used to represent

programming language syntaxes:

<expr> ::= <expr> <op> <term> | <term>

<term> ::= <number> | <id>

<op> ::= + | -

Front end

• A parser tries to map a

program to the syntactic

elements defined in the

grammar

• A parse can be

represented by a tree

called a parse or syntax

tree

Front end

• A parse tree can be

represented more

compactly referred to as

Abstract Syntax Tree

(AST)

• AST is often used as IR

between front end and

back end

Back end

• Translate IR into target machine code

• Choose instructions for each IR operation

• Decide what to keep in registers at each
point

• Ensure conformance with system interfaces

Instruction

selection
IR

Machine code

errors

Register

Allocation

Back end

• Produce compact fast code

• Use available addressing modes

Instruction

selection
IR

Machine code

errors

Register

Allocation

Back end

• Have a value in a register when used

• Limited resources

• Optimal allocation is difficult

Instruction

selection
IR

Machine code

errors

Register

Allocation

Traditional three pass

compiler

• Code improvement analyzes and change IR

• Goal is to reduce runtime

Front end
Source

code

Machine

code

errors

IR
Back end

Middle

end

IR

Middle end (optimizer)

• Modern optimizers are usually built as a set

of passes

• Typical passes

– Constant propagation

– Common sub-expression elimination

– Redundant store elimination

– Dead code elimination

