
Introduction

to

Data Structures

Ms G Jayabharathi

Definition

 Data structure is representation of the logical

relationship existing between individual

elements of data.

 In other words, a data structure is a way of

organizing all data items that considers not

only the elements stored but also their

relationship to each other.

Ms G Jayabharathi

Introduction

 Data structure affects the design of both

structural & functional aspects of a program.

Program=algorithm + Data Structure

 You know that a algorithm is a step by step

procedure to solve a particular function.

Ms G Jayabharathi

Introduction

 That means, algorithm is a set of instruction

written to carry out certain tasks & the data

structure is the way of organizing the data

with their logical relationship retained.

 To develop a program of an algorithm, we

should select an appropriate data structure

for that algorithm.

 Therefore algorithm and its associated data

structures from a program.
Ms G Jayabharathi

Classification of Data Structure

 Data structure are normally divided into two

broad categories:

 Primitive Data Structure

 Non-Primitive Data Structure

Ms G Jayabharathi

Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Integer Float Character PointerFloatInteger Float

Ms G Jayabharathi

Classification of Data Structure

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

Ms G Jayabharathi

Primitive Data Structure

 There are basic structures and directly
operated upon by the machine instructions.

 In general, there are different representation
on different computers.

 Integer, Floating-point number, Character
constants, string constants, pointers etc, fall
in this category.

Ms G Jayabharathi

Non-Primitive Data Structure

 There are more sophisticated data

structures.

 These are derived from the primitive data

structures.

 The non-primitive data structures

emphasize on structuring of a group of

homogeneous (same type) or heterogeneous

(different type) data items.

Ms G Jayabharathi

Non-Primitive Data Structure

 Lists, Stack, Queue, Tree, Graph are

example of non-primitive data structures.

 The design of an efficient data structure

must take operations to be performed on the

data structure.

Ms G Jayabharathi

Non-Primitive Data Structure

 The most commonly used operation on data
structure are broadly categorized into
following types:

 Create

 Selection

 Updating

 Searching

 Sorting

 Merging

 Destroy or DeleteMs G Jayabharathi

Different between them

 A primitive data structure is generally a

basic structure that is usually built into the

language, such as an integer, a float.

 A non-primitive data structure is built out of

primitive data structures linked together in

meaningful ways, such as a or a linked-list,

binary search tree, AVL Tree, graph etc.

Ms G Jayabharathi

Description of various

Data Structures : Arrays

 An array is defined as a set of finite number

of homogeneous elements or same data

items.

 It means an array can contain one type of

data only, either all integer, all float-point

number or all character.

Ms G Jayabharathi

Arrays

 Simply, declaration of array is as follows:

int arr[10]

 Where int specifies the data type or type of

elements arrays stores.

 “arr” is the name of array & the number

specified inside the square brackets is the

number of elements an array can store, this is

also called sized or length of array.
Ms G Jayabharathi

Arrays

 Following are some of the concepts to be
remembered about arrays:

 The individual element of an array can be
accessed by specifying name of the array,
following by index or subscript inside
square brackets.

 The first element of the array has index
zero[0]. It means the first element and
last element will be specified as:arr[0] &
arr[9]

Respectively. Ms G Jayabharathi

Arrays

 The elements of array will always be
stored in the consecutive (continues)
memory location.

 The number of elements that can be stored
in an array, that is the size of array or its
length is given by the following equation:

(Upperbound-lowerbound)+1

Ms G Jayabharathi

Arrays

 For the above array it would be

(9-0)+1=10,where 0 is the lower bound
of array and 9 is the upper bound of
array.

 Array can always be read or written
through loop. If we read a one-
dimensional array it require one loop for
reading and other for writing the array.

Ms G Jayabharathi

Arrays

 For example: Reading an array

For(i=0;i<=9;i++)

scanf(“%d”,&arr[i]);

 For example: Writing an array

For(i=0;i<=9;i++)

printf(“%d”,arr[i]);

Ms G Jayabharathi

Arrays

 If we are reading or writing two-

dimensional array it would require two

loops. And similarly the array of a N

dimension would required N loops.

 Some common operation performed on

array are:

 Creation of an array

 Traversing an array

Ms G Jayabharathi

Arrays

 Insertion of new element

 Deletion of required element

 Modification of an element

 Merging of arrays

Ms G Jayabharathi

Lists

 A lists (Linear linked list) can be defined as a
collection of variable number of data items.

 Lists are the most commonly used non-
primitive data structures.

 An element of list must contain at least two
fields, one for storing data or information and
other for storing address of next element.

 As you know for storing address we have a
special data structure of list the address must
be pointer type.

Ms G Jayabharathi

Lists

 Technically each such element is referred to

as a node, therefore a list can be defined as

a collection of nodes as show bellow:

Head

AAA BBB CCC

Information field Pointer field

[Linear Liked List]

Ms G Jayabharathi

Lists

 Types of linked lists:
 Single linked list

 Doubly linked list

 Single circular linked list

 Doubly circular linked list

Ms G Jayabharathi

Stack

 A stack is also an ordered collection of

elements like arrays, but it has a special

feature that deletion and insertion of

elements can be done only from one end

called the top of the stack (TOP)

 Due to this property it is also called as last

in first out type of data structure (LIFO).

Ms G Jayabharathi

Stack

 It could be through of just like a stack of plates

placed on table in a party, a guest always takes

off a fresh plate from the top and the new plates

are placed on to the stack at the top.

 It is a non-primitive data structure.

 When an element is inserted into a stack or

removed from the stack, its base remains fixed

where the top of stack changes.

Ms G Jayabharathi

Stack

 Insertion of element into stack is called

PUSH and deletion of element from stack is

called POP.

 The bellow show figure how the operations

take place on a stack:

PUSH POP

[STACK]
Ms G Jayabharathi

Stack

 The stack can be implemented into two

ways:

 Using arrays (Static implementation)

 Using pointer (Dynamic implementation)

Ms G Jayabharathi

Queue

 Queue are first in first out type of data

structure (i.e. FIFO)

 In a queue new elements are added to the

queue from one end called REAR end and

the element are always removed from other

end called the FRONT end.

 The people standing in a railway reservation

row are an example of queue.

Ms G Jayabharathi

Queue

 Each new person comes and stands at the

end of the row and person getting their

reservation confirmed get out of the row

from the front end.

 The bellow show figure how the

operations take place on a stack:

10 20 30 40 50

front rearMs G Jayabharathi

Queue

 The queue can be implemented into two

ways:

 Using arrays (Static implementation)

 Using pointer (Dynamic implementation)

Ms G Jayabharathi

Trees

 A tree can be defined as finite set of data

items (nodes).

 Tree is non-linear type of data structure in

which data items are arranged or stored in a

sorted sequence.

 Tree represent the hierarchical relationship

between various elements.

Ms G Jayabharathi

Trees

 In trees:

 There is a special data item at the top of
hierarchy called the Root of the tree.

 The remaining data items are partitioned into
number of mutually exclusive subset, each of
which is itself, a tree which is called the sub
tree.

 The tree always grows in length towards
bottom in data structures, unlike natural trees
which grows upwards.Ms G Jayabharathi

Trees

 The tree structure organizes the data into

branches, which related the information.

A

B C

D E F G

root

Ms G Jayabharathi

Graph

 Graph is a mathematical non-linear data

structure capable of representing many kind

of physical structures.

 It has found application in Geography,

Chemistry and Engineering sciences.

 Definition: A graph G(V,E) is a set of

vertices V and a set of edges E.

Ms G Jayabharathi

Graph

 An edge connects a pair of vertices and

many have weight such as length, cost and

another measuring instrument for according

the graph.

 Vertices on the graph are shown as point or

circles and edges are drawn as arcs or line

segment.

Ms G Jayabharathi

Graph

 Example of graph:

v2

v1

v4

v5

v3

10

15

8

6

11

9
v4

v1

v2
v4

v3

[a] Directed &
Weighted Graph

[b] Undirected Graph

Ms G Jayabharathi

Graph

 Types of Graphs:

 Directed graph

 Undirected graph

 Simple graph

 Weighted graph

 Connected graph

 Non-connected graph

Ms G Jayabharathi

