
Database management concepts

• Database Management Systems (DBMS)

•An example of a database (relational)

• Database schema (e.g. relational)

• Data independence

•Architecture of a DBMS

• Types of DBMS

• Basic DBMS types

• Retrieving and manipulating data: query processing

• Database views

• Data integrity

• Client-Server architectures

• Knowledge Bases and KBS (and area of AI)

Mr Ramakrishna reddy K

• DBMS tasks:

• Managing large quantity of structured data

• Efficient retrieval and modification: query processing and optimization

• Sharing data: multiple users use and manipulate data

• Controlling the access to data: maintaining the data integrity

•An example of a database (relational):

• Relations (tables)

•Attributes (columns)

• Tuples (rows)

• Example query: Salesperson='Mary' AND Price>100.

Mr Ramakrishna reddy K

Mr Ramakrishna reddy K

• Database schema (e.g. relational):

• Names and types of attributes

•Addresses

• Indexing

• Statistics

•Authorization rules to access data etc.

• Data independence: separation of the physical and logical data

• Particularly important for distributed systems

• The mapping between them is provided by the schema

•Architecture of a DBMS - three levels: external, conceptual and internal schema

• Types of DBMS

• The data structures supported: tables (relational), trees, networks, objects

• Type of service provided: high level query language, programming primitives

Mr Ramakrishna reddy K

Mr Ramakrishna reddy K

Basic DBMS types

• Linear files

• Sequence of records with a fixed format usually stored on a single file

• Limitation: single file

• Example query: Salesperson='Mary' AND Price>100

• Hierarchical structure

• Trees of records: one-to-many relationships

• Limitations:

• Requires duplicating records (e.g. many-to-many relationship)

• Problems when updated

• Retrieval requires knowing the structure (limited data independence):

traversing the tree from top to bottom using a procedural language

• Network structure: similar to the hierarchical database with the implementation

of many-to-many relationships

• Relational structure

• Object-Oriented structure

• Objects (collection of data items and procedures) and interactions between them.

• Is this really a new paradigm, or a special case of network structure?

• Separate implementation vs. implementation on top of a RDBMS
Mr Ramakrishna reddy K

Relational structure

• Relations, attributes, tuples

• Primary key (unique combination of attributes for each tuple)

• Foreign keys: relationships between tuples (many-to-many).

Example: SUPPLIES defines relations between ITEM and SUPPLIER tuples.

•Advantages: many-to-many relationships, high level declarative query language (e.g. SQL)

• SQL example (retrieve all items supplied by a supplier located in Troy):

SELECT ItemName

FROM ITEM, SUPPLIES, SUPPLIER

WHERE SUPPLIER.City = "Troy" AND

SUPPLIER.Supplier# = SUPPLIES.Supplier# AND

SUPPLIES.Item# = ITEM.Item#

• Programming language interfaces: including SQL queries in the code

Mr Ramakrishna reddy K

Retrieving and manipulating data: query processing

• Parsing and validating a query: data dictionary - a relation listing all relations and

relations listing the attributes

• Plans for computing the query: list of possible way to execute the query,

estimated cost for each. Example:

SELECT ItemNames, Price

FROM ITEM, SALES

WHERE SALES.Item# = ITEM.Item# AND Salesperson="Mary"

• Index: B-tree index, drawbacks - additional space, updating;

indexing not all relations (e.g. the keys only)

• Estimating the cost for computing a query: size of the relation, existence/size of the indices.

Example: estimating Attribute=value with a given number of tuples and the size of the index.

• Query optimization: finding the best plan (minimizing the computational cost and

the size of the intermediate results), subsets of tuples, projection and join.

• Static and dynamic optimization
Mr Ramakrishna reddy K

Database views

• Creating user defined subsets of the database

• Improving the user interface

• Example:

CREATE VIEW MarySales(ItemName,Price)

AS SELECT ItemName, Price

FROM ITEM, SALES

WHERE ITEM.Item#=SALES.Item# AND Salesperson="Mary"

Then the query:

SELECT ItemName

FROM MarySales

WHERE Proce>100

translates to:

SELECT ItemName

FROM ITEM, SALES

WHERE ITEM.Item#=SALES.Item# AND Salesperson="Mary" AND Price>100

Mr Ramakrishna reddy K

Data integrity

Integrity constraints: semantic conditions on the data

• Individual constraints on data items

• Uniqueness of the primary keys

• Dependencies between relations

Concurrency control

• Steps in executing a query

• Concurrent users of the database, interfering the execution of one query by another

• Transaction: a set of operations that takes the database from one consistent state to another

• Solving the concurrency control problem: making transactions atomic operations (one at a time)

• Concurrent transactions: serializability theory (two-phase locking), read lock (many), write lock (one).

• Serializible transactions: first phase - accumulating locks, second phase - releasing locks.

• Deadlocks: deadlock detection algorithms.

• Distributed execution problems:

• release a lock at one node (all locks accumulated at the other node?)

• strict two-phase locking

Mr Ramakrishna reddy K

The Transaction Model

• Examples of primitives for transactions.

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

Mr Ramakrishna reddy K

The Transaction Model

a) Transaction to reserve three flights commits

b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION

reserve WP -> JFK;

reserve JFK -> Nairobi;

reserve Nairobi -> Malindi;

END_TRANSACTION

(a)

BEGIN_TRANSACTION

reserve WP -> JFK;

reserve JFK -> Nairobi;

reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION

(b)

Mr Ramakrishna reddy K

Distributed Transactions

a) A nested transaction

b) A distributed transactionMr Ramakrishna reddy K

Writeahead Log

• a) A transaction

• b) – d) The log before each statement is executed

x = 0;

y = 0;

BEGIN_TRANSACTION;

x = x + 1;

y = y + 2

x = y * y;

END_TRANSACTION;

(a)

Log

[x = 0 / 1]

(b)

Log

[x = 0 / 1]

[y = 0/2]

(c)

Log

[x = 0 / 1]

[y = 0/2]

[x = 1/4]

(d)

Mr Ramakrishna reddy K

Concurrency Control (1)

• General organization of managers for handling transactions.Mr Ramakrishna reddy K

Serializability

• a) – c) Three transactions T1, T2, and T3

• d) Possible schedules

BEGIN_TRANSACTION

x = 0;

x = x + 1;

END_TRANSACTION

(a)

BEGIN_TRANSACTION

x = 0;

x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION

x = 0;

x = x + 3;

END_TRANSACTION

(c)

Schedule 1 x = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3 Legal

Schedule 2 x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3; Legal

Schedule 3 x = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3; Illegal

(d)

Mr Ramakrishna reddy K

Two-Phase Locking (1)

• Two-phase locking.
Mr Ramakrishna reddy K

Two-Phase Locking (2)

• Strict two-phase locking.
Mr Ramakrishna reddy K

Data integrity

Backup and recovery

• The problem of keeping a transaction atomic: successful or failed

What if some of the intermediate steps failed?

• Log of database activity: use the log to undo a failed transaction.

• More problems: when to write the log, failure of the recovery system executing the log.

Security and access control

•Access rules for relations or attributes. Stored in a special relation (part of the data dictionary).

• Content-independent and content-dependent access control

• Content-dependent control: access to a view only or query modification

(e.g. and-ing a predicate to the WHERE clause)

• Discretionary and mandatory access control

Mr Ramakrishna reddy K

Knowledge Bases and KBS (and area of AI)

• Information, Data, Knowledge (data in a form that allows reasoning)

• Basic components of a KBS

• Knowledge base

• Inference (reasoning) mechanism (e.g. forward/backward chaining)

• Explanation mechanism/Interface

• Rule-based systems (medical diagnostics, credit evaluation etc.)

Mr Ramakrishna reddy K

Mr Ramakrishna reddy K

