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Topic Overview

• Overview of Serial Dynamic Programming 

• Serial Monadic DP Formulations 

• Nonserial Monadic DP Formulations 

• Serial Polyadic DP Formulations 

• Nonserial Polyadic DP Formulations 



Overview of Serial Dynamic Programming

• Dynamic programming (DP) is used to solve a wide 

variety of discrete optimization problems such as 

scheduling, string-editing, packaging, and inventory 

management. 

• Break problems into subproblems and combine their 

solutions into solutions to larger problems. 

• In contrast to divide-and-conquer, there may be 

relationships across subproblems.



Dynamic Programming: Example

• Consider the problem of finding a shortest path between 
a pair of vertices in an acyclic graph. 

• An edge connecting node i to node j has cost c(i,j).

• The graph contains n nodes numbered 0,1,…, n-1, and 
has an edge from node i to node j only if i < j. Node 0 is 
source and node n-1 is the destination.

• Let f(x) be the cost of the shortest path from node 0 to 
node x.



Dynamic Programming: Example

• A graph for which the shortest path between nodes 0 

and 4 is to be computed.



Dynamic Programming

• The solution to a DP problem is typically expressed as a 
minimum (or maximum) of possible alternate solutions. 

• If r represents the cost of a solution composed of 
subproblems x1, x2,…, xl, then r can be written as

Here, g is the composition function.

• If the optimal solution to each problem is determined by 
composing optimal solutions to the subproblems and 
selecting the minimum (or maximum), the formulation is 
said to be a DP formulation.



Dynamic Programming: Example

The computation and composition of subproblem solutions 
to solve problem f(x8).



Dynamic Programming

• The recursive DP equation is also called the functional 
equation or optimization equation.

• In the equation for the shortest path problem the 
composition function is f(j) + c(j,x). This contains a single 
recursive term (f(j)). Such a formulation is called 
monadic.

• If the RHS has multiple recursive terms, the DP 
formulation is called polyadic.



Dynamic Programming

• The dependencies between subproblems can be 
expressed as a graph.

• If the graph can be levelized (i.e., solutions to problems 
at a level depend only on solutions to problems at the 
previous level), the formulation is called serial, else it is 
called non-serial.

• Based on these two criteria, we can classify DP 
formulations into four categories - serial-monadic, serial-
polyadic, non-serial-monadic, non-serial-polyadic.

• This classification is useful since it identifies concurrency 
and dependencies that guide parallel formulations.



Serial Monadic DP Formulations

• It is difficult to derive canonical parallel formulations for 

the entire class of formulations.

• For this reason, we select two representative examples, 

the shortest-path problem for a multistage graph and the 

0/1 knapsack problem.

• We derive parallel formulations for these problems and 

identify common principles guiding design within the 

class.



Shortest-Path Problem

• Special class of shortest path problem where the graph 
is a weighted multistage graph of r + 1 levels.

• Each level is assumed to have n levels and every node 
at level i is connected to every node at level i + 1. 

• Levels zero and r contain only one node, the source and 
destination nodes, respectively. 

• The objective of this problem is to find the shortest path 
from S to R.



Shortest-Path Problem

An example of a serial monadic DP formulation for finding 
the shortest path in a graph whose nodes can be 

organized into levels.



Shortest-Path Problem

• The ith node at level l in the graph is labeled vi
l and the 

cost of an edge connecting vi
l to node vj

l+1 is labeled ci
l
,j.

• The cost of reaching the goal node R from any node vi
l is 

represented by Ci
l.

• If there are n nodes at level l, the vector 

[C0
l, C1

l,…, 
Cn

l
-1]

T is referred to as Cl. Note that

C0 = [C0
0].

• We have Ci
l = min {(ci

l
,j + Cj

l+1) | j is a node at level l + 1}



Shortest-Path Problem

• Since all nodes vj
r-1 have only one edge connecting them 

to the goal node R at level r, the cost Cj
r-1 is equal to cj

r
,
-

R
1.

• We have:

Notice that this problem is serial and monadic. 



Shortest-Path Problem

• The cost of reaching the goal node R from any node at 

level l is (0 < l < r – 1) is



Shortest-Path Problem

• We can express the solution to the problem as a 

modified sequence of matrix-vector products. 

• Replacing the addition operation by minimization and the 

multiplication operation by addition, the preceding set of 

equations becomes: 

where Cl and Cl+1 are n x 1 vectors representing the cost 

of reaching the goal node from each node at levels l and 

l + 1.



Shortest-Path Problem

• Matrix Ml,l+1 is an n x n matrix in which entry (i, j) stores 

the cost of the edge connecting node i at level l to node j

at level l + 1.

• The shortest path problem has been formulated as a 

sequence of r matrix-vector products.



Parallel Shortest-Path

• We can parallelize this algorithm using the parallel 

algorithms for the matrix-vector product.

• Θ(n) processing elements can compute each vector Cl in 

time Θ(n) and solve the entire problem in time Θ(rn).

• In many instances of this problem, the matrix M may be 

sparse. For such problems, it is highly desirable to use 

sparse matrix techniques. 



0/1 Knapsack Problem

• We are given a knapsack of capacity c and a set of n objects 
numbered 1,2,…,n. Each object i has weight wi and profit pi.

• Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is 
not in the knapsack, and vi = 1 if it is in the knapsack.

• The goal is to find a subset of objects to put into the knapsack so 
that 

(that is, the objects fit into the knapsack) and

is maximized (that is, the profit is maximized). 



0/1 Knapsack Problem 

• The naive method is to consider all 2n possible subsets 

of the n objects and choose the one that fits into the 

knapsack and maximizes the profit. 

• Let F[i,x] be the maximum profit for a knapsack of 

capacity x using only objects {1,2,…,i}. The DP 

formulation is: 



0/1 Knapsack Problem

• Construct a table F of size n x c in row-major order.

• Filling an entry in a row requires two entries from the 

previous row: one from the same column and one from 

the column offset by the weight of the object 

corresponding to the row. 

• Computing each entry takes constant time; the 

sequential run time of this algorithm is Θ(nc).

• The formulation is serial-monadic.



0/1 Knapsack Problem

Computing entries of table F for the 0/1 knapsack problem. The computation of 
entry F[i,j] requires communication with processing elements containing 

entries F[i-1,j] and F[i-1,j-wi].



0/1 Knapsack Problem

• Using c processors in a PRAM, we can derive a simple 
parallel algorithm that runs in O(n) time by partitioning 
the columns across processors. 

• In a distributed memory machine, in the jth iteration, for 
computing F[j,r] at processing element Pr-1, F[j-1,r] is 
available locally but F[j-1,r-wj] must be fetched. 

• The communication operation is a circular shift and the 
time is given by (ts + tw) log c. The total time is therefore 
tc + (ts + tw) log c.

• Across all n iterations (rows), the parallel time is O(n log 
c). Note that this is not cost optimal.



0/1 Knapsack Problem

• Using p-processing elements, each processing element 
computes c/p elements of the table in each iteration.

• The corresponding shift operation takes time (2ts + twc/p), 
since the data block may be partitioned across two 
processors, but the total volume of data is c/p.

• The corresponding parallel time is n(tcc/p + 2ts + twc/p), 
or O(nc/p) (which is cost-optimal). 

• Note that there is an upper bound on the efficiency of 
this formulation.



Nonserial Monadic DP Formulations: Longest-

Common-Subsequence

• Given a sequence A = <a1, a2,…, an>, a subsequence of 

A can be formed by deleting some entries from A.

• Given two sequences A = <a1, a2,…, an> and B = <b1, 

b2,…, bm>, find the longest sequence that is a 

subsequence of both A and B.

• If A = <c,a,d,b,r,z> and B = <a,s,b,z>, the longest 

common subsequence of A and B is <a,b,z>.



Longest-Common-Subsequence Problem

• Let F[i,j] denote the length of the longest common 
subsequence of the first i elements of A and the first j
elements of B. The objective of the LCS problem is to 
find F[n,m].

• We can write:



Longest-Common-Subsequence Problem

• The algorithm computes the two-dimensional F table in a 
row- or column-major fashion. The complexity is Θ(nm).

• Treating nodes along a diagonal as belonging to one 
level, each node depends on two subproblems at the 
preceding level and one subproblem two levels prior. 

• This DP formulation is nonserial monadic. 



Longest-Common-Subsequence Problem

(a) Computing entries of table   for the longest-common-
subsequence problem. Computation proceeds along the dotted 
diagonal lines. (b) Mapping elements of the table to processing 

elements. 



Longest-Common-Subsequence: Example

• Consider the LCS of two amino-acid sequences H E A G A W G H E E and P A W H E A E. For the interested 
reader, the names of the corresponding amino-acids are A: Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P: 
Proline, and W: Tryptophan. 

• The F table for computing the LCS of the sequences. The LCS is A W H E E. 



Parallel Longest-Common-Subsequence

• Table entries are computed in a diagonal sweep from the 

top-left to the bottom-right corner. 

• Using n processors in a PRAM, each entry in a diagonal 

can be computed in constant time. 

• For two sequences of length n, there are 2n-1 diagonals. 

• The parallel run time is Θ(n) and the algorithm is cost-

optimal. 



Parallel Longest-Common-Subsequence

• Consider a (logical) linear array of processors. 
Processing element Pi is responsible for the (i+1)th

column of the table.

• To compute F[i,j], processing element Pj-1 may need 
either F[i-1,j-1] or F[i,j-1] from the processing element to 
its left. This communication takes time ts + tw.

• The computation takes constant time (tc).

• We have:

• Note that this formulation is cost-optimal, however, its 
efficiency is upper-bounded by 0.5! 

• Can you think of how to fix this? 



Serial Polyadic DP Formulation: Floyd's All-

Pairs Shortest Path

• Given weighted graph G(V,E), Floyd's algorithm 
determines the cost di,j of the shortest path between 
each pair of nodes in V.

• Let di
k
,j be the minimum cost of a path from node i to 

node j, using only nodes v0,v1,…,vk-1.

• We have: 

• Each iteration requires time Θ(n2) and the overall run 
time of the sequential algorithm is Θ(n3).



Serial Polyadic DP Formulation: Floyd's All-

Pairs Shortest Path

• A PRAM formulation of this algorithm uses n2 processors 
in a logical 2D mesh. Processor Pi,j computes the value 
of  di

k
,j for k=1,2,…,n in constant time. 

• The parallel runtime is Θ(n) and it is cost-optimal.

• The algorithm can easily be adapted to practical 
architectures, as discussed in our treatment of Graph 
Algorithms. 



Nonserial Polyadic DP Formulation: Optimal Matrix-

Parenthesization Problem

• When multiplying a sequence of matrices, the order of 
multiplication significantly impacts operation count. 

• Let C[i,j] be the optimal cost of multiplying the matrices 
Ai,…Aj.

• The chain of matrices can be expressed as a product of 
two smaller chains, Ai,Ai+1,…,Ak and Ak+1,…,Aj.

• The chain Ai,Ai+1,…,Ak results in a matrix of dimensions 
ri-1 x rk, and the chain Ak+1,…,Aj results in a matrix of 
dimensions rk x rj.

• The cost of multiplying these two matrices is ri-1rkrj.



Optimal Matrix-Parenthesization Problem

• We have:



Optimal Matrix-Parenthesization Problem

A nonserial polyadic DP formulation for finding an optimal matrix 
parenthesization for a chain of four matrices. A square node 

represents the optimal cost of multiplying a matrix chain. A circle 
node represents a possible parenthesization.



Optimal Matrix-Parenthesization Problem

• The goal of finding C[1,n] is accomplished in a bottom-up 
fashion.

• Visualize this by thinking of filling in the C table 
diagonally. Entries in diagonal l corresponds to the cost 
of multiplying matrix chains of length l+1.

• The value of C[i,j] is computed as min{C[i,k] + C[k+1,j] + 
ri-1rkrj}, where k can take values from i to j-1.

• Computing C[i,j] requires that we evaluate (j-i) terms and 
select their minimum. 

• The computation of each term takes time tc, and the 
computation of C[i,j] takes time (j-i)tc. Each entry in 
diagonal l can be computed in time ltc.



Optimal Matrix-Parenthesization Problem

• The algorithm computes (n-1) chains of length two. This 

takes time (n-1)tc; computing n-2 chains of length three 

takes time (n-2)tc. In the final step, the algorithm 

computes one chain of length n in time (n-1)tc.

• It follows that the serial time is Θ(n3).



Optimal Matrix-Parenthesization Problem

The diagonal order of computation for the optimal matrix-
parenthesization problem. 



Parallel Optimal Matrix-Parenthesization 

Problem

• Consider a logical ring of processors. In step l, each processor computes a 
single element belonging to the lth diagonal.

• On computing the assigned value of the element in table C, each processor 
sends its value to all other processors using an all-to-all broadcast. 

• The next value can then be computed locally. 

• The total time required to compute the entries along diagonal l is ltc+tslog 
n+tw(n-1).

• The corresponding parallel time is given by: 



Parallel Optimal Matrix-Parenthesization 

Problem

• When using p (<n) processors, each processor stores n/p nodes.

• The time taken for all-to-all broadcast of n/p words is 

and the time to compute n/p entries of the table in the lth diagonal is 
ltcn/p.

• This formulation can be improved to use up to n(n+1)/2 processors 
using pipelining.



Discussion of Parallel Dynamic Programming 

Algorithms

• By representing computation as a graph, we identify 
three sources of parallelism: parallelism within nodes, 
parallelism across nodes at a level, and pipelining nodes 
across multiple levels. The first two are available in serial 
formulations and the third one in non-serial formulations. 

• Data locality is critical for performance. Different DP 
formulations, by the very nature of the problem instance, 
have different degrees of locality.


