
1

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

OPERATING SYSTEM
LAB MANUAL

Subject Code: CS403PC

Regulation: R18/JNTUH

Academic Year: 2020-2021

III B. TECH I SEMESTER

COMPUTER SCIENCE AND ENGINEERING

KG REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

Affiliated To JNTUH, Chilkur,(V), Moinabad(M) R. R Dist, TS-501504

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION AND MISSION OF THE INSTITUTION

VISION:

 To become self-sustainable institution which is recognized for its new age engineering through

innovative teaching and learning culture, inculcating research and entrepreneurial ecosystem, and

sustainable social impact in the community.

MISSION:

 To offer undergraduate and post-graduate programs that is supported through industry

relevant curriculum and innovative teaching and learning processes that would help students

succeed in their professional careers.

 To provide necessary support structures for students, which will contribute to their personal

and professional growth and enable them to become leaders in their respective fields.

 To provide faculty and students with an ecosystem that fosters research and development

through strategic partnerships with government organisations and collaboration with

industries.

 To contribute to the development of the region by using our technological expertise to work

with nearby communities and support them in their social and economic growth.

VISION AND MISSION OF CSE DEPARTMENT

VISION

To be recognized as a department of excellence by stimulating a learning environment in which

students and faculty will thrive and grow to achieve their professional, institutional and societal

goals.

MISSION

 To provide high quality technical education to students that will enable life-long learning and

build expertise in advanced technologies in Computer Science and Engineering.

 To promote research and development by providing opportunities to solve complex engineering

problems in collaboration with industry and government agencies.

 To encourage professional development of students that will inculcate ethical values and

leadership skills while working with the community to address societal issues.

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program Educational Objectives (PEOs):

A graduate of the Computer Science and Engineering Program should:

Program Educational Objective 1: (PEO1)

The Graduates will provide solutions to difficult and challenging issues in their profession by applying

computer science and engineering theory and principles.

Program Educational Objective 2: (PEO2)

The Graduates have successful careers in computer science and engineering fields or will be able to

Successfully pursue advanced degrees.

Program Educational Objective 3: (PEO3)

The Graduates will communicate effectively, work collaboratively and exhibit high levels of

Professionalism, moral and ethical responsibility.

Program Educational Objective 4: (PEO4)

 The Graduates will develop the ability to understand and analyse Engineering issues in a broader

perspective with ethical responsibility towards sustainable development.

 Program Outcomes (POs):

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

Fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

PSO1 Problem Solving Skills – Graduate will be able to apply computational techniques and

software principles to solve complex engineering problems pertaining to software

engineering.

PSO2

Professional Skills – Graduate will be able to think critically, communicate effectively, and

collaborate in teams through participation in co and extra-curricular activities.

PSO3

Successful Career – Graduates will possess a solid foundation in computer science and

engineering that will enable them to grow in their profession and pursue lifelong learning

through post-graduation and professional development.

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OPERATING SYSTEMS LAB MANUAL (R18A0583)

TABLE OF CONTENTS

 EXP.NO NAMEOF THE EXPERIMENT PAGE.NO

1

CPU SCHEDULING ALGORITHMS

A) FIRST COME FIRST SERVE(FCFS) 1-3

B) SHORTEST JOB FIRST(SJF) 4-6

C) ROUND ROBIN 7-9

D) PRIORITY 10-12

2
PRODUCER-CONSUMER PROBLEM USING

SEMAPHORES
13-14

3 DINING-PHILOSOPHERS PROBLEM 15-18

4

MEMORYMANAGEMENT TECHNIQUES

A) MULTI PROGRAMMING WITH FIXED

NUMBER OF TASKS(MFT)
19-21

B) MULTI PROGRAMMING WITH

VARIABLE NUMBER OF TASKS(MVT)
22-24

5

CONTIGUOUS MEMORY ALLOCATION

A) WORST FIT 25-26

B) BEST FIT 27-28

C) FIRST FIT 28-29

6

PAGE REPLACEMENT ALGORITHMS

A) FIRST IN FIRST OUT(FIFO) 30-32

B) LEAST RECENTLY USED(LRU) 33-35

C) OPTIMAL 36-39

7

FILE ORGANIZATION TECHNIQUES

A) SINGLE LEVEL DIRECTORY 40-42

B) TWO LEVEL DIRECTORY 43-46

8

FILE ALLOCATION STRATEGIES

A) SEQUENTIAL 47-49

B) INDEXED 50-52

C) LINKED 53-55

9 DEAD LOCK AVOIDANCE 56-59

10 DEAD LOCK PREVENTION 60-62

11

DISK SCHEDULING ALGORITHMS

A) FCFS 63-64

B) SCAN 65-66

C) C-SCAN 67-69

Page 1

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 EXPERIMENT NO.1

CPU SCHEDULINGALGORITHMS

 A.FIRST COME FIRST SERVE:

AIM: To write a c program to simulate the CPU scheduling algorithm First Come

First Serve (FCFS)

DESCRIPTION:

To calculate the average waiting time using the FCFS algorithm first the waiting

time of the first process is kept zero and the waiting time of the second process is

the burst time of the first process and the waiting time of the third process is the

sum of the burst times of the first and the second process and so on. After

calculating all the waiting times the average waiting time is calculated as the

average of all the waiting times. FCFS mainly says first come first serve the

algorithm which came first will be served first.

 ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process name and the burst

time Step 4: Set the waiting of the first process as ‗0‘and its burst time as its

turnaround time Step 5: for each process in the Ready Q calculate

 Waiting time (n) = waiting time (n-1) + Burst time (n-

Turnaround time (n) = waiting time (n)+Burst time(n)

Step 6: Calculate

 Average waiting time = Total waiting Time / Number of process

 Average Turnaround time = Total Turnaround Time / Number of process

 Step 7: stop

Page 2

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 SOURCE CODE:

#include<stdio.h>

#include<conio.h>

main()

{

int bt[20], wt[20], tat[20], i, n;

float wtavg, tatavg;

clrscr();

printf("\nEnter the number of processes -- ");

scanf("%d", &n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for Process %d -- ", i);

scanf("%d", &bt[i]);

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n);

getch();

Page 3

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 INPUT:

Enter the number of processes -- 3

Enter Burst Time for Process 0 -- 24

Enter Burst Time for Process 1 -- 3

Enter Burst Time for Process 2 -- 3

OUTPUT:

PROCESS BURST TIME

WAITING TIME

TURNAROUND

P0 24

0

TIME

24

P1 3 24 27

P2 3 27 30

Average Waiting Time-- 17.000000

Average Turnaround Time -- 27.000000

Page 4

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 B.SHORTEST JOB FIRST:

AIM: To write a program to stimulate the CPU scheduling algorithm Shortest job first

(Non- Preemption)

DESCRIPTION:

To calculate the average waiting time in the shortest job first algorithm the sorting of

the process based on their burst time in ascending order then calculate the waiting time of

each process as the sum of the bursting times of all the process previous or before to that

process.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU

burst time

Step 4: Start the Ready Q according the shortest Burst time by sorting according to

lowest to highest burst time.

Step 5: Set the waiting time of the first process as ‗0‘ and its turnaround time as its burst

time.

Step 6: Sort the processes names based on their Burt time

Step 7: For each process in the ready queue,

calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 8: Calculate

c)Average waiting time = Total waiting Time / Number of process

 d)Average Turnaround time = Total Turnaround Time / Number of

process Step 9: Stop the process

Page 5

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

main()

{

int p[20], bt[20], wt[20], tat[20], i, k, n, temp; float wtavg,

tatavg;

clrscr();

printf("\nEnter the number of processes -- ");

scanf("%d", &n);

for(i=0;i<n;i++)

{

p[i]=i;

printf("Enter Burst Time for Process %d -- ", i);

scanf("%d", &bt[i]);

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(bt[i]>bt[k])

{

temp=bt[i];

bt[i]=bt[k];

bt[k]=temp;

temp=p[i];

p[i]=p[k];

p[k]=temp;

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0]; for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n); getch();}

Page 6

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT:

Enter the number of processes --

4

Enter Burst Time for Process 0 -- 6

Enter Burst Time for Process 1 -- 8

Enter Burst Time for Process 2 -- 7

Enter Burst Time for Process 3 -- 3

OUTPUT:

PROCESS BURST WAITING TURNARO

 TIME TIME UND TIME

P3 3 0 3

P0 6 3 9

P2 7 9 16

P1 8 16 24

Average Waiting Time -- 7.000000

Average Turnaround Time -- 13.000000

Page 7

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

C.ROUND ROBIN:

 AIM: To simulate the CPU scheduling algorithm round-robin.

 DESCRIPTION:

To aim is to calculate the average waiting time. There will be a time slice, each process

should be executed within that time-slice and if not it will go to the waiting state so first

check whether the burst time is less than the time-slice. If it is less than it assign the

waiting time to the sum of the total times. If it is greater than the burst-time then

subtract the time slot from the actual burst time and increment it by time-slot and the

loop continues until all the processes are completed.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum (or) time

slice

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

time

Step 4: Calculate the no. of time slices for each process where No. of time

slice for process (n) = burst time process (n)/time slice

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

a) Waiting time for process (n) = waiting time of process(n-1)+ burst time of

process(n-1) + the time difference in getting the CPU fromprocess(n-1)

b) Turnaround time for process(n) = waiting time of process(n) + burst time of

process(n)+ the time difference in getting CPU from process(n).

Step 7: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number ofprocess

Step 8: Stop the process

Page 8

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE

#include<stdio.h>

main()

{

int i,j,n,bu[10],wa[10],tat[10],t,ct[10],max;

float awt=0,att=0,temp=0;

clrscr();

printf("Enter the no of processes -- ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for process %d -- ", i+1);

scanf("%d",&bu[i]);

ct[i]=bu[i];

}

printf("\nEnter the size of time slice -- ");

scanf("%d",&t);

max=bu[0];

for(i=1;i<n;i++)

if(max<bu[i])

max=bu[i];

for(j=0;j<(max/t)+1;j++)

for(i=0;i<n;i++)

if(bu[i]!=0)

if(bu[i]<=t) {

tat[i]=temp+bu[i];

temp=temp+bu[i];

bu[i]=0;

}

else {

bu[i]=bu[i]-t;

temp=temp+t;

}

for(i=0;i<n;i++){

wa[i]=tat[i]-

ct[i]; att+=tat[i];

awt+=wa[i];}

printf("\nThe Average Turnaround time is -- %f",att/n);

printf("\nThe Average Waiting time is -- %f ",awt/n);

printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);

getch();}

Page 9

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT:

Enter the no of processes – 3

Enter Burst Time for process 1 – 24

Enter Burst Time for process 2 -- 3

Enter Burst Time for process 3 – 3

Enter the size of time slice – 3

OUTPUT:

PROCESS

BURST TIME

WAITING TIME

TURNAROUNDTIME

1 24 6 30

2 3 4 7

3 3 7 10

The Average Turnaround time is – 15.666667 The

Average Waiting time is ------------ 5.666667

Page 10

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

D.PRIORITY:

AIM: To write a c program to simulate the CPU scheduling priorityalgorithm.

DESCRIPTION:

To calculate the average waiting time in the priority algorithm, sort the burst

times according to their priorities and then calculate the average waiting time of the

processes. The waiting time of each process is obtained by summing up the burst times

of all the previous processes.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

time

Step 4: Sort the ready queue according to the priority number.

Step 5: Set the waiting of the first process as ‗0‘ and its burst time as its turnaround time

Step 6: Arrange the processes based on process priority

Step 7: For each process in the Ready Q calculate Step 8:

for each process in the Ready Q calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 9: Calculate

Average waiting time = Total waiting Time / Number of process

c) Average Turnaround time = Total Turnaround Time / Number of process Print

the results in an order.

Step10: Stop

Page 11

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE:

#include<stdio.h>

main()

{

int p[20],bt[20],pri[20], wt[20],tat[20],i, k, n, temp; float wtavg,

tatavg;

clrscr();

printf("Enter the number of processes --- ");

scanf("%d",&n);

for(i=0;i<n;i++){

p[i] = i;

printf("Enter the Burst Time & Priority of Process %d --- ",i); scanf("%d

%d",&bt[i], &pri[i]);

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(pri[i] > pri[k]){

temp=p[i];

p[i]=p[k];

p[k]=temp;

temp=bt[i];

bt[i]=bt[k];

bt[k]=temp;

temp=pri[i];

pri[i]=pri[k];

pri[k]=temp;

}

wtavg = wt[0] = 0;

tatavg = tat[0] = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] + bt[i-1];

tat[i] = tat[i-1] + bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND

TIME");

for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],pri[i],bt[i],wt[i],tat[i]);

printf("\nAverage Waiting Time is --- %f",wtavg/n); printf("\nAverage

Turnaround Time is --- %f",tatavg/n);

getch();}

Page 12

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT:

Enter the number of processes -- 5

Enter the Burst Time & Priority of Process 0 --- 10

3

Enter the Burst Time & Priority of Process 1 --- 1 1

Enter the Burst Time & Priority of Process 2 --- 2 4

Enter the Burst Time & Priority of Process 3 --- 1 5

Enter the Burst Time & Priority of Process 4 --- 5 2

OUTPUT:

PROCESS PRIORITY BURST TIME

1 1 1

WAITIN

G TIME

0

TURNARO

UND TIME

1

4 2 5 1 6

0 3 10 6 16

2 4 2 16 18

3 5 1 18 19

Average Waiting Time is --- 8.200000

Average Turnaround Time is ----------------- 12.000000

VIVA QUESTIONS

1) Define the following

a) Turnaround time b) Waiting time c) Burst time d) Arrival time

2) What is meant by process scheduling?

3) What are the various states of process?

4) What is the difference between preemptive and non-preemptive scheduling

5) What is meant by time slice?

6) What is round robin scheduling?

Page 13

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 EXPERIMENT:NO 2

 AIM: To Write a C program to simulate producer-consumer problem using semaphores.

DESCRIPTION:

Producer consumer problem is a synchronization problem. There is a fixed size buffer where the

producer produces items and that is consumed by a consumer process. One solution to the producer-

consumer problem uses shared memory. To allow producer and consumer processes to run

concurrently, there must be available a buffer of items that can be filled by the producer and emptied

by the consumer. This buffer will reside in a region of memory that is shared by the producer and

consumer processes. The producer and consumer must be synchronized, so that the consumer does

not try to consume an item that has not yet been produced.

PROGRAM

#include<stdio.>

void main()

{

int buffer[10], bufsize, in, out, produce, consume,

choice=0; in = 0;

out = 0;

bufsize = 10;

while(choice !=3)

{

printf(“\n1. Produce \t 2. Consume \t3. Exit”);

printf(“\nEnter your choice: ”);

scanf(“%d”,&choice);

switch(choice) {

case 1: if((in+1)%bufsize==out)
printf(“\nBuffer is Full”);

else

{

}

break;;;

printf(“\nEnter the value: “);

scanf(“%d”, &produce);

buffer[in] = produce;

in = (in+1)%bufsize;

case 2: if(in == out)
printf(“\nBuffer is Empty”);

} } }

else

{

consume = buffer[out];

printf(“\nThe consumed value is %d”, consume);

out = (out+1)%bufsize;
}
break;

Page 14

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 OUTPUT

1. Produce 2. Consume 3. Exit

Enter your choice: 2

Buffer is Empty

1. Produce 2. Consume 3. Exit

Enter your choice: 1

Enter the value: 100

1. Produce 2. Consume 3. Exit

Enter your choice: 2

The consumed value is 100

1. Produce 2. Consume 3. Exit

Enter your choice: 3

Page 15

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 EXPERIMENT.NO 3

 AIM: To Write a C program to simulate the concept of Dining-Philosophers problem.

 DESCRIPTION:

The dining-philosophers problem is considered a classic synchronization problem because it is an example of

a large class of concurrency-control problems. It is a simple representation of the need to allocate several

resources among several processes in a deadlock-free and starvation-free manner. Consider five philosophers

who spend their lives thinking and eating. The philosophers share a circular table surrounded by five chairs,

each belonging to one philosopher. In the center of the table is a bowl of rice, and the table is laid with five

single chopsticks. When a philosopher thinks, she does not interact with her colleagues. From time to time, a

philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that are

between her and her left and right neighbors). A philosopher may pick up only one chopstick at a time.

Obviously, she cam1ot pick up a chopstick that is already in the hand of a neighbor. When a hungry

philosopher has both her chopsticks at the same time, she eats without releasing her chopsticks. When she is

finished eating, she puts down both of her chopsticks and starts thinking again. The dining-philosophers

problem may lead to a deadlock situation and hence some rules have to be framed to avoid the occurrence of

deadlock.

PROGRAM

int tph, philname[20], status[20], howhung, hu[20], cho; main()

{

int i; clrscr();

printf("\n\nDINING PHILOSOPHER PROBLEM");

printf("\nEnter the total no. of philosophers: ");

scanf("%d",&tph);

for(i=0;i<tph;i++)

{

philname[i]=(i+1); status[i]=1;

}

printf("How many are hungry : ");

scanf("%d", &howhung);

if(howhung==tph)

{

printf(“\n All are hungry..\nDead lock stage will occur”);

printf(\n”Exiting\n”);

else{

for(i=0;i<howhung;i++){

printf(“Enterphilosopher%dposition:”,(i+1));

scanf(“%d”,&hu[i]);

status[hu[i]]=2;

}

do

{

printf("1.One can eat at a time\t2.Two can eat at a time

Page 16

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

\t3.Exit\nEnter your choice:");

scanf("%d", &cho);

switch(cho)

{

case 1: one();

case 2: two();

break;

case 3: exit(0);

break;

}

}

one()

{

}

}while(1);

default: printf("\nInvalid option..");

int pos=0, x, i;

printf("\nAllow one philosopher to eat at any time\n");

for(i=0;i<howhung; i++, pos++)

{

printf("\nP %d is granted to eat", philname[hu[pos]]);

for(x=pos;x<howhung;x++)

printf("\nP %d is waiting", philname[hu[x]]);

}

two()

{

}

int i, j, s=0, t, r, x;

printf("\n Allow two philosophers to eat at same

time\n"); for(i=0;i<howhung;i++)

{

for(j=i+1;j<howhung;j++)

{

if(abs(hu[i]-hu[j])>=1&& abs(hu[i]-hu[j])!=4)

{

printf("\n\ncombination %d \n", (s+1));

t=hu[i];

r=hu[j]; s++;

printf("\nP %d and P %d are granted to eat", philname[hu[i]],

philname[hu[j]]);

Page 17

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

for(x=0;x<howhung;x++)

{

if((hu[x]!=t)&&(hu[x]!=r))

printf("\nP %d is waiting", philname[hu[x]]);

}

}

}

}

}

INPUT
DINING PHILOSOPHER PROBLEM

Enter the total no. of philosophers: 5

How many are hungry : 3

Enter philosopher 1 position: 2

Enter philosopher 2 position: 4

Enter philosopher 3 position: 5

OUTPUT

1. One can eat at a time2.Two can

eat at a time 3.Exit Enter your choice: 1

Allow one philosopher to eat at any time

P 3 is granted to eat

P 3 is waiting

P 5 is waiting

P 0 is waiting

P 5 is granted to eat

P 5 is waiting

P 0 is waiting

P 0 is granted to eat

P 0 is waiting

Page 18

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

1.One can eat at a time 2.Two can eat at a time 3.Exit

Enter your choice: 2

Allow two philosophers to eat at same time

combination 1

P 3 and P 5 are granted to eat

P 0 is waiting

combination 2

P 3 and P 0 are granted to eat

P 5 is waiting

combination 3

P 5 and P 0 are granted to eat

P 3 is waiting

1.One can eat at a time

2.Two can eat at a time

3.Exit Enter your choice: 3

Page 19

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT.NO 4

 MEMORY MANAGEMENT

 A). MEMORY MANAGEMENT WITH FIXED PARTITIONING TECHNIQUE (MFT)

AIM: To implement and simulate the MFT algorithm.

DESCRIPTION:

In this the memory is divided in two parts and process is fit into it. The process which is best

suited will be placed in the particular memory where it suits. In MFT, the memory is partitioned

into fixed size partitions and each job is assigned to a partition. The memory assigned to a

partition does not change. In MVT, each job gets just the amount of memory it needs. That is, the

partitioning of memory is dynamic and changes as jobs enter and leave the system. MVT is a

more ``efficient'' user of resources. MFT suffers with the problem of internal fragmentation and

MVT suffers with external fragmentation.

ALGORITHM:

Step1: Start the process.

Step2: Declarevariables.

Step3: Enter total memory size ms.

Step4: Allocate memory for os.

Ms=ms-os

Step5: Read the no partition to be divided n Partition size=ms/n.

Step6: Read the process no and process size.

Step 7: If process size is less than partition size allot alse blocke the process. While allocating

update memory wastage-external fragmentation.

if(pn[i]==pn[j])f=1;

if(f==0){ if(ps[i]<=siz)

{

extft=extft+size-

ps[i];avail[i]=1; count++;

}

}

Step 8: Print the results

Page 20

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

main()

{

int ms, bs, nob, ef,n,

mp[10],tif=0; int i,p=0;

clrscr();

printf("Enter the total memory available (in Bytes) -- ");

scanf("%d",&ms);

printf("Enter the block size (in Bytes) -- ");

scanf("%d", &bs);

nob=ms/bs;

ef=ms - nob*bs;

printf("\nEnter the number of processes -- ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter memory required for process %d (in Bytes)-- ",i+1);

scanf("%d",&mp[i]);

}

printf("\nNo. of Blocks available in memory--%d",nob);

printf("\n\nPROCESS\tMEMORYREQUIRED\tALLOCATED\tINTERNAL

FRAGMENTATION");

for(i=0;i<n && p<nob;i++)

{

printf("\n %d\t\t%d",i+1,mp[i]);

if(mp[i] > bs)

printf("\t\tNO\t\t---");

else

{

printf("\t\tYES\t%d",bs-mp[i]);

tif = tif + bs-mp[i];

p++;

}

}

if(i<n)

printf("\nMemory is Full, Remaining Processes cannot be accomodated");

printf("\n\nTotal Internal Fragmentation is %d",tif);

printf("\nTotal External Fragmentation is %d",ef);

getch();

}

Page 21

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT

Enter the total memory available (in Bytes) --

1000

Enter the block size (in Bytes)-- 300

Enter the number of processes – 5

Enter memory required for process 1 (in Bytes) -- 275

Enter memory required for process 2 (in Bytes) -- 400

Enter memory required for process 3 (in Bytes) -- 290

Enter memory required for process 4 (in Bytes) -- 293

Enter memory required for process 5 (in Bytes) -- 100

No. of Blocks available in memory -- 3

OUTPUT

PROCESS

ALLOCAT

INTERNAL

MEMORY REQUIRED ED FRAGMENTATION

1 275 YES 25

2 400 NO -----

3 290 YES 10

4 293 YES 7

Memory is Full, Remaining Processes cannot be accommodated Total

Internal Fragmentation is 42

Total External Fragmentation is 100

Page 22

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

B) MEMORY VARIABLE PARTIONING TYPE (MVT)

AIM: To write a program to simulate the MVT algorithm

ALGORITHM:

Step1: start the process.

Step2: Declare variables.

Step3: Enter total memory size ms.

Step4: Allocate memory for os.

Ms=ms-os

Step5: Read the no partition to be divided n Partition size=ms/n.

Step6: Read the process no and process size.

Step 7: If process size is less than partition size allot alse blocke the process. While allocating

update memory wastage-external fragmentation.

if(pn[i]==pn[j]) f=1;

if(f==0){ if(ps[i]<=size)

{

extft=extft+size-

ps[i];avail[i]=1; count++;

}

}

Step 8: Print the results

Step 9: Stop the process.

Page 23

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 SOURCE CODE:

#include<stdio.h>

#include<conio.h>

main()

{

int ms,mp[10],i,

temp,n=0; char ch = 'y';

clrscr();

printf("\nEnter the total memory available (in Bytes)-- ");

scanf("%d",&ms);

temp=ms;

for(i=0;ch=='y';i++,n++)

{

printf("\nEnter memory required for process %d (in Bytes) -- ",i+1);

scanf("%d",&mp[i]);

if(mp[i]<=temp)

{

printf("\nMemory is allocated for Process %d ",i+1);

temp = temp - mp[i];

}

else

{

printf("\nMemory is Full"); break;

}

printf("\nDo you want to continue(y/n) -- ");

scanf(" %c", &ch);

}

printf("\n\nTotal Memory Available -- %d", ms);

printf("\n\n\tPROCESS\t\t MEMORY ALLOCATED ");

for(i=0;i<n;i++)

printf("\n \t%d\t\t%d",i+1,mp[i]);

printf("\n\nTotal Memory Allocated is %d",ms-temp);

printf("\nTotal External Fragmentation is %d",temp);

getch();

}

Page 24

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT:

Enter the total memory available (in Bytes) – 1000

Enter memory required for process 1 (in Bytes) – 400

Memory is allocated for Process 1

Do you want to continue(y/n) -- y

Enter memory required for process 2 (in Bytes) -- 275

Memory is allocated for Process 2

Do you want to continue(y/n) – y

Enter memory required for process 3 (in Bytes) – 550

Memory is Full

Total Memory Available – 1000

PROCESS MEMORY ALLOCATED

1 400

2 275

Total Memory Allocated is 675

Total External Fragmentation is 325

 VIVA QUESTIONS

1) What is MFT?

2) What is MVT?

3) What is the difference between MVT and MFT?

4) What is meant by fragmentation?

5) Give the difference between internal and external fragmentation

Page 25

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT.NO 5

MEMORY ALLOCATION TECHNIQUES

AIM: To Write a C program to simulate the following contiguous memory allocation techniques

a) Worst-fit b) Best-fit c) First-fit

DESCRIPTION:

One of the simplest methods for memory allocation is to divide memory into several fixed-sized

partitions. Each partition may contain exactly one process. In this multiple-partition method, when a

partition is free, a process is selected from the input queue and is loaded into the free partition. When the

process terminates, the partition becomes available for another process. The operating system keeps a

table indicating which parts of memory are available and which are occupied. Finally, when a process

arrives and needs memory, a memory section large enough for this process is provided. When it is time to

load or swap a process into main memory, and if there is more than one free block of memory of

sufficient size, then the operating system must decide which free block to allocate. Best-fit strategy

chooses the block that is closest in size to the request. First-fit chooses the first available block that is

large enough. Worst-fit chooses the largest available block.

 SOURCE CODE:

WORST-FIT

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int

frag[max],b[max],f[max],i,j,nb,nf,t

emp; static int bf[max],ff[max];

clrscr();

printf("\n\tMemory Management Scheme - First Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

Page 26

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

{

ff[i]=j;

break;

}

}

}

frag[i]=temp;

bf[ff[i]]=1;

}

}

printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

INPUT:

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 1 5 4

2 4 3 7 3

Page 27

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

BEST-FIT

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;

static int bf[max],ff[max];

clrscr();

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

printf("Block %d:",i);

scanf("%d",&b[i]);

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

if(lowest>temp)

{

ff[i]=j;

lowest=temp;

}

}}

frag[i]=lowest; bf[ff[i]]=1; lowest=10000;

}

printf("\nFile No\tFile Size \tBlock No\tBlock

Size\tFragment"); for(i=1;i<=nf && ff[i]!=0;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

Page 28

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT:

Enter the number of blocks: 3

 Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT:

 File No File Size Block No

Block Size

Fragment

 1 2 2 1

 4 1 5 1

 FIRST-FIT

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int

frag[max],b[max],f[max],i,j,nb,nf,temp,highes

t=0; static int bf[max],ff[max];

clrscr();

printf("\n\tMemory Management Scheme - Worst Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

Page 29

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1) //if bf[j] is not allocated

{

temp=b[j]-f[i];

if(temp>=0)

if(highest<temp)

{

}

}

frag[i]=highest; bf[ff[i]]=1; highest=0;

}

ff[i]=j; highest=temp;

}

printf("\nFile_no:\tFile_size:\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

Page 30

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 INPUT:

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT:

File No File Size Block No

Block Size

Fragment

1 1 3 7 6

2 4 1 5 1

Page 31

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 EXPERIMENT NO.6

 PAGE REPLACEMENT ALGORITHMS

 AIM: To implement FIFO page replacement technique.

 a) FIFO b) LRU c) OPTIMAL

 DESCRIPTION:

Page replacement algorithms are an important part of virtual memory management and it helps the OS to

decide which memory page can be moved out making space for the currently needed page. However, the

ultimate objective of all page replacement algorithms is to reduce the number of page faults.

FIFO-This is the simplest page replacement algorithm. In this algorithm, the operating system keeps track

of all pages in the memory in a queue, the oldest page is in the front of the queue. When a page needs to be

replaced page in the front of the queue is selected for removal.

LRU-In this algorithm page will be replaced which is least recently used

OPTIMAL- In this algorithm, pages are replaced which would not be used for the longest duration of time

in the future. This algorithm will give us less page fault when compared to other page replacement

algorithms.

ALGORITHM:

1. Start the process

2. Read number of pages n

3. Read number of pages no

4. Read page numbers into an array a[i]

5. Initialize avail[i]=0 .to check page hit

6. Replace the page with circular queue, while re-placing check page availability in the frame

Place avail[i]=1 if page is placed in theframe Count page faults

7. Print the results.

8. Stop the process.

Page 32

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

A) FIRST IN FIRST OUT

SOURCE CODE :

#include<stdio.h>

#include<conio.h> int fr[3];

void main()

{

void display();

int i,j,page[12]={2,3,2,1,5,2,4,5,3,2,5,2};

int

flag1=0,flag2=0,pf=0,frsize=3,top=0;

clrscr();

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

flag1=0; flag2=0; for(i=0;i<12;i++)

{

if(fr[i]==page[j])

{

flag1=1; flag2=1; break;

}

}

if(flag1==0)

{

for(i=0;i<frsize;i++)

{

if(fr[i]==-1)

{

fr[i]=page[j]; flag2=1; break;

}

}

}

if(flag2==0)

{

fr[top]=page[j];

top++;

pf++;

if(top>=frsize)

top=0;

}

display();

}

Page 33

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

printf("Number of page faults : %d ",pf+frsize);

getch();

}

void display()

{

int i; printf("\n");

for(i=0;i<3;i++)

printf("%d\t",fr[i]);

}

OUTPUT:

2 -1 -1

2 3 -1

2 3 -1

2 3 1

5 3 1

5 2 1

5 2 4

5 2 4

3 2 4

3 2 4

3 5 4

3 5 2

Number of page faults: 9

Page 34

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

B) LEAST RECENTLY USED

AIM: To implement LRU page replacement technique.

ALGORITHM:

1. Start the process

2. Declare the size

3. Get the number of pages to be inserted

4. Get the value

5. Declare counter and stack

6. Select the least recently used page by counter value

7. Stack them according the selection.

8. Display the values

9. Stop the process

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

int fr[3];

void main()

{

void display();

int p[12]={2,3,2,1,5,2,4,5,3,2,5,2},i,j,fs[3];

int index,k,l,flag1=0,flag2=0,pf=0,frsize=3;

clrscr();

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

flag1=0,flag2=0;

for(i=0;i<3;i++)

{

if(fr[i]==p[j])

{

flag1=1;

flag2=1; break;

}

}

if(flag1==0)

Page 35

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

{

for(i=0;i<3;i++)

{

if(fr[i]==-1)

{

fr[i]=p[j]; flag2=1;

break;

}

}

}

if(flag2==0)

{

for(i=0;i<3;i++)

fs[i]=0;

for(k=j-1,l=1;l<=frsize-1;l++,k--)

{

for(i=0;i<3;i++)

{

if(fr[i]==p[k]) fs[i]=1;

}}

for(i=0;i<3;i++)

{

if(fs[i]==0)

index=i;

}

fr[index]=p[j];

pf++;

}

display();

}

printf("\n no of page faults :%d",pf+frsize);

getch();

}

void display()

{

int i; printf("\n");

for(i=0;i<3;i++)

printf("\t%d",fr[i]);

}

Page 36

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT:

2 -1 -1

2 3 -1

2 3 -1

2 3 1

2 5 1

2 5 1

2 5 4

2 5 4

3 5 4

3 5 2

3 5 2

3 5 2

No of page faults: 7

Page 37

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

C) OPTIMAL

AIM: To implement optimal page replacement technique.

ALGORTHIM:

1. Start Program

2. Read Number Of Pages And Frames

3.Read Each Page Value

4. Search For Page In The Frame

5. If Not Available Allocate Free Frame

6. If No Frames Is Free Replace The Page With The Page That Is Lastly Used

7.Print Page Number Of Page Faults

8.Stop process.

SOURCE CODE:

/* Program to simulate optimal page replacement */

#include<stdio.h>

#include<conio.h>

int fr[3], n, m;

void

display();

void main()

{

int i,j,page[20],fs[10];

int

max,found=0,lg[3],index,k,l,flag1=0,flag2=0,pf=0;

float pr;

clrscr();

printf("Enter length of the reference string: ");

scanf("%d",&n);

printf("Enter the reference string: ");

for(i=0;i<n;i++)

scanf("%d",&page[i]);

printf("Enter no of frames: ");

scanf("%d",&m);

for(i=0;i<m;i++)

fr[i]=-1; pf=m;

Page 38

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

for(j=0;j<n;j++)

{

flag1=0; flag2=0;

for(i=0;i<m;i++)

{

if(fr[i]==page[j])

{

flag1=1; flag2=1;

break;

}

}

if(flag1==0)

{

for(i=0;i<m;i++)

{

if(fr[i]==-1)

{

fr[i]=page[j]; flag2=1;

break;

}

}

}

if(flag2==0)

{

for(i=0;i<m;i++)

lg[i]=0;

for(i=0;i<m;i++)

{

for(k=j+1;k<=n;k++)

{

if(fr[i]==page[k])

{

lg[i]=k-j;

break;

}

}

}

found=0;

for(i=0;i<m;i++)

{

if(lg[i]==0)

{

index=i;

found = 1;

Page 39

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

break;

}

}

if(found==0)

{

max=lg[0]; index=0;

for(i=0;i<m;i++)

{

if(max<lg[i])

{

max=lg[i];

index=i;

}

}

}

fr[index]=page[j];

pf++;

}

display();

}

printf("Number of page faults : %d\n", pf);

pr=(float)pf/n*100;

printf("Page fault rate = %f \n", pr); getch();

}

void display()

{

int i; for(i=0;i<m;i++)

printf("%d\t",fr[i]);

printf("\n");

}

Page 40

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT:

Enter length of the reference string: 12

Enter the reference string: 1 2 3 4 1 2 5 1 2 3 4 5

Enter no of frames: 3

1 -1 -1

1 2 -1

1 2 3

1 2 4

1 2 4

1 2 4

1 2 5

1 2 5

1 2 5

3 2 5

4 2 5

4 2 5

Number of page faults : 7 Page fault rate = 58.333332

 VIVA QUESTIONS

1) What is meant by page fault?

2) What is meant by paging?

3) What is page hit and page fault rate?

4) List the various page replacement algorithm

5) Which one is the best replacement algorithm?

Page 41

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT NO. 7

FILE ORGANIZATION TECHNIQUES

A) SINGLE LEVEL DIRECTORY:

AIM: Program to simulate Single level directory file organization technique.

DESCRIPTION:

The directory structure is the organization of files into a hierarchy of folders. In a single-level

directory system, all the files are placed in one directory. There is a root directory which has all

files. It has a simple architecture and there are no sub directories. Advantage of single level

directory system is that it is easy to find a file in the directory.

SOURCE CODE :

#include<stdio.h>

struct

{

char dname[10],fname[10][10];

int fcnt;

}dir;

void main()

{

int i,ch; char

f[30]; clrscr();

dir.fcnt = 0;

printf("\nEnter name of directory -- ");

scanf("%s", dir.dname);

while(1)

{

printf("\n\n1. Create File\t2. Delete File\t3. Search File \n

4. Display Files\t5. Exit\nEnter your choice -- ");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter the name of the file -- ");

scanf("%s",dir.fname[dir.fcnt]);

dir.fcnt++; break;

case 2: printf("\nEnter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fcnt;i++)

{

if(strcmp(f, dir.fname[i])==0)

{

printf("File %s is deleted ",f); strcpy(dir.fname[i],dir.fname[dir.fcnt-1]); break;

Page 42

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

}

if(i==dir.fcnt)

printf("File %s not found",f);

else

dir.fcnt--;

break;

case 3: printf("\nEnter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fcnt;i++)

{

if(strcmp(f, dir.fname[i])==0)

{

printf("File %s is found ", f);

break;

}

}

if(i==dir.fcnt)

printf("File %s not found",f);

break;

case 4: if(dir.fcnt==0)

printf("\nDirectory Empty");

else

{

printf("\nThe Files are -- ");

for(i=0;i<dir.fcnt;i++)

printf("\t%s",dir.fname[i]);

}

break;

}

getch();}

default: exit(0);

}

Page 43

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT:

Enter name of directory -- CSE

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- A

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- B

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- C

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 4

The Files are -- A B C

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 3

Enter the name of the file – ABC File

ABC not found

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 2

Enter the name of the file – B

File B is deleted

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 5

Page 44

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

B) TWO LEVEL DIRECTORY

AIM: Program to simulate two level file organization technique

Description:

In the two-level directory system, each user has own user file directory (UFD). The system

maintains a master block that has one entry for each user. This master block contains the

addresses of the directory of the users. When a user job starts or a user logs in, the system's

master file directory (MFD) is searched. When a user refers to a particular file, only his own UFD

is searched.

SOURCE CODE :

#include<stdio.h>

struct

{

char dname[10],fname[10][10];

int fcnt;

}dir[10];

void main()

{

int i,ch,dcnt,k; char

f[30], d[30]; clrscr();

dcnt=0;

while(1)

{

printf("\n\n1. Create Directory\t2. Create File\t3. Delete File");

printf("\n4. Search File\t\t5. Display\t6. Exit\t Enter your choice --");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter name of directory -- ");

scanf("%s", dir[dcnt].dname);

dir[dcnt].fcnt=0;

dcnt++;

printf("Directory created"); break;

case 2: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");

scanf("%s",dir[i].fname[dir[i].fcnt]);

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

dir[i].fcnt++;

printf("File created");

}

if(i==dcnt)

printf("Directory %s not found",d);

break;

case 3: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is deleted ",f);

dir[i].fcnt--;

strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);

goto jmp;

}

}

printf("File %s not found",f); goto jmp;

}

}

printf("Directory %s not found",d);

jmp : break;

case 4: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter the name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is found ",f); goto jmp1;

}

}

printf("File %s not found",f); goto jmp1;

}

}

4

Page 45

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

printf("Directory %s not found",d); jmp1: break;

case 5: if(dcnt==0)

printf("\nNo Directory's ");

else

{

printf("\nDirectory\tFiles");

for(i=0;i<dcnt;i++)

{

}

getch();

}

}

}

break;

default:exit(0);

}

printf("\n%s\t\t",dir[i].dname);

for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

Page 46

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 1

Enter name of directory -- DIR1 Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 1

Enter name of directory -- DIR2 Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A1

File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A2

File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6.

Exit Enter your choice – 6

VIVA QUESTIONS

1. Define directory?

2. List the different types of directory structures?

3. What is the advantage of hierarchical directory structure?

4. Which of the directory structures is efficient? Why?

5. What is acyclic graph directory?

Page 47

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT.NO.8

 FILE ALLOCATION STRATEGIES

A) SEQUENTIAL:

AIM: To write a C program for implementing sequential file allocation method

DESCRIPTION:

The most common form of file structure is the sequential file in this type of file,

a fixed format is used for records. All records (of the system) have the same length,

consisting of the same number of fixed length fields in a particular order because the

length and position of each field are known, only the values of fields need to be stored, the

field name and length for each field are attributes of the file structure.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations to each in sequential order a).

Randomly select a location from availablelocation s1= random(100);

a) Check whether the required locations are free from the selected

location.

if(b[s1].flag==0){

for (j=s1;j<s1+p[i];j++){

if((b[j].flag)==0)count++;

}

if(count==p[i]) break;

}

b) Allocate and set flag=1 to the allocated locations. for(s=s1;s<(s1+p[i]);s++)

{

k[i][j]=s; j=j+1; b[s].bno=s;

b[s].flag=1;

}

Step 5: Print the results file no, length, Blocks allocated. Step

6: Stop the program

Page 48

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE :

#include<stdio.h>

main()

{

int f[50],i,st,j,len,c,k;

clrscr();

for(i=0;i<50;i++)

f[i]=0;

X:

printf("\n Enter the starting block & length of file");

scanf("%d%d",&st,&len);

for(j=st;j<(st+len);j++)

if(f[j]==0)

{

f[j]=1

;

printf("\n%d->%d",j,f[j]);

}

else

{

printf("Block already allocated");

break;

}

if(j==(st+len))

printf("\n the file is allocated to disk");

printf("\n if u want to enter more files?(y-1/n-0)");

scanf("%d",&c);

if(c==1)

goto X;

else

exit();

getch();

}

Page 49

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT:

Enter the starting block & length of file 4 10

4->1

5->1

6->1

7->1

8->1

9->1

10->1

11->1

12->1

13->1

The file is allocated to disk.

Page 50

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

B) INDEXED:

AIM: To implement allocation method using chained method

DESCRIPTION:

In the chained method file allocation table contains a field which points to starting

block of memory. From it for each bloc a pointer is kept to next successive block. Hence,

there is no external fragmentation.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q= random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

q=random(100);

{

if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

Page 51

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE :

#include<stdio.h>

int f[50],i,k,j,inde[50],n,c,count=0,p;

main()

{

clrscr();

for(i=0;i<50;i++)

f[i]=0;

x: printf("enter index block\t");

scanf("%d",&p);

if(f[p]==0)

{

f[p]=1;

printf("enter no of files on index\t");

scanf("%d",&n);

}

else

{

printf("Block already allocated\n");

goto x;

}

for(i=0;i<n;i++)

scanf("%d",&inde[i]);

for(i=0;i<n;i++)

if(f[inde[i]]==1)

{

printf("Block already allocated");

goto x;

}

for(j=0;j<n;j++)

f[inde[j]]=1;

printf("\n allocated");

printf("\n file indexed");

for(k=0;k<n;k++)

printf("\n %d->%d:%d",p,inde[k],f[inde[k]]);

printf(" Enter 1 to enter more files and 0 to exit\t");

scanf("%d",&c);

if(c==1)

goto x;

else

exit();

getch();

}

Page 52

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT: enter index block 9

Enter no of files on index 3 1

2 3

Allocated

File indexed

9->1:1

9->2;1

9->3:1 enter 1 to enter more files and 0 to exit

Page 53

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

C) LINKED:

AIM: To implement linked file allocation technique.

DESCRIPTION:

In the chained method file allocation table contains a field which points to starting

block of memory. From it for each bloc a pointer is kept to next successive block. Hence,

there is no external fragmentation

ALGORTHIM:

Step 1: Start the program.

Step 2: Get the number of

files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q=

random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

While allocating next location address to attach it to previous location

for(i=0;i<n;i++)

{

for(j=0;j<s[i];j++)

{

q=random(100); if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

if(j>0)

{

}

}

p=r[i][j-1]; b[p].next=q;}

Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

Page 54

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

SOURCE CODE :

#include<stdio.h>

main()

{

int f[50],p,i,j,k,a,st,len,n,c;

clrscr();

for(i=0;i<50;i++) f[i]=0;

printf("Enter how many blocks that are already

allocated"); scanf("%d",&p);

printf("\nEnter the blocks no.s that are already allocated");

for(i=0;i<p;i++)

{

scanf("%d",&a);

f[a]=1;

}

X:

printf("Enter the starting index block &

length"); scanf("%d%d",&st,&len); k=len;

for(j=st;j<(k+st);j++)

{

if(f[j]==0)

{ f[j]=1;

printf("\n%d->%d",j,f[j]);

}

else

{

printf("\n %d->file is already

allocated",j);

k++;

}

}

printf("\n If u want to enter one

more file? (yes-1/no-0)");

scanf("%d",&c);

if(c==1)

goto

X;

else

exit();

getch();}

Page 55

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT:

Enter how many blocks that are already allocated 3 Enter the blocks no.s

that are already allocated 4 7 Enter the starting index block & length 3 7 9

3->1

4->1 file is already allocated

5->1

6->1

7->1 file is already allocated

8->1

9->1file is already allocated

10->1

11->1

12->1

VIVA QUESTIONS

1) List the various types of files

2) What are the various file allocation strategies?

3) What is linked allocation?

4) What are the advantages of linked allocation?

5) What are the disadvantages of sequential allocation methods?

Page 56

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT.NO 9

DEAD LOCK AVOIDANCE

AIM: To Simulate bankers algorithm for Dead Lock Avoidance (Banker‘s Algorithm)

DESCRIPTION:

Deadlock is a situation where in two or more competing actions are waiting f or the other

to finish, and thus neither ever does. When a new process enters a system, it must declare the

maximum number of instances of each resource type it needed. This number may exceed the

total number of resources in the system. When the user request a set of resources, the system

must determine whether the allocation of each resources will leave the system in safe state. If

it will the resources are allocation; otherwise the process must wait until some other process

release the resources.

Data structures

ALGORITHM:

1. Start the program.

2. Get the values of resources and processes.

3. Get the avail value.

4. After allocation find the need value.

5. Check whether its possible to allocate.

6. If it is possible then the system is in safe state.

7. Else system is not in safety state.

8. If the new request comes then check that the system is in safety.

9. or not if we allow the request.

10. stop the program.

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

int alloc[10][10],max[10][10];

int avail[10],work[10],total[10];

int i,j,k,n,need[10][10];

int m;

int count=0,c=0;

char finish[10];

clrscr();

printf("Enter the no. of processes and resources:");

Page 57

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

scanf("%d%d",&n,&m);

for(i=0;i<=n;i++)

finish[i]='n';

printf("Enter the claim matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<m;j++)

scanf("%d",&max[i][j]);

printf("Enter the allocation matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<m;j++)

scanf("%d",&alloc[i][j]);

printf("Resource vector:");

for(i=0;i<m;i++)

scanf("%d",&total[i]);

for(i=0;i<m;i++)

avail[i]=0; for(i=0;i<n;i++)

Page 58

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

for(j=0;j<m;j++)

avail[j]+=alloc[i][j];

for(i=0;i<m;i++)

work[i]=avail[i];

for(j=0;j<m;j++)

work[j]=total[j]-work[j];

for(i=0;i<n;i++)

for(j=0;j<m;j++)

need[i][j]=max[i][j]-alloc[i][j];

A:

for(i=0;i<n;i++)

{

c=0;

for(j=0;j<m;j++)

if((need[i][j]<=work[j])&&(finish[i]=='n'))

c++;

if(c==m)

{

printf("All the resources can be allocated to Process %d", i+1);

printf("\n\nAvailable resources are:");

for(k=0;k<m;k++)

{

work[k]+=alloc[i][k];

printf("%4d",work[k]);

}

printf("\n");

finish[i]='y';

printf("\nProcess %d executed?:%c \n",i+1,finish[i]);

count++;

}

}

if(count!=n)

goto A;

else

printf("\n System is in safe mode");

printf("\n The given state is safe state");

getch();

}

Page 59

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT

Enter the no. of processes and resources: 4 3

Enter the claim matrix:

3 2 2

6 1 3

3 1 4

4 2 2

Enter the allocation matrix:

1 0 0

6 1 2

2 1 1

0 0 2

Resource vector:9 3 6

All the resources can be allocated to Process 2

Available resources are: 6 2 3

Process 2 executed?:y

All the resources can be allocated to Process 3 Available resources

are: 8 3 4

Process 3 executed?:y

All the resources can be allocated to Process 4 Available resources

are: 8 3 6

Process 4 executed?:y

All the resources can be allocated to Process 1

Available resources are: 9 3 6

Process 1 executed?:y

System is in safe mode

The given state is safe state

 VIVA QUESTIONS

1) What is meant by deadlock?

2) What is safe state in banker’s algorithms?

3) What is banker’s algorithm?

4) What are the necessary conditions where deadlock occurs?

5) What are the principles and goals of protection?

Page 60

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT.NO 10

DEAD LOCKPREVENTION

AIM: To implement deadlock prevention technique

DESCRIPTION:

Banker‘s Algorithm:

When a new process enters a system, it must declare the maximum number of

instances of each resource type it needed. This number may exceed the total number of

resources in the system. When the user request a set of resources, the system must

determine whether the allocation of each resources will leave the system in safe state. If

it will the resources are allocation; otherwise the process must wait until some other

process release the resources.

n-Number of process, m-number of resource types.

 Available: Available[j]=k, k – instance of resource type Rj is available.

Max: If max[i, j]=k, Pi may request at most k instances resource Rj.

 Allocation: If Allocation [i, j]=k, Pi allocated to k instances of resource Rj Need:

If Need[I, j]=k, Pi may need k more instances of resource type Rj,

 Need[I, j]=Max[I, j]-Allocation[I, j];

ALGORITHM:

 Start the program.

 Get the values of resources and processes.

 Get the avail value.

 After allocation find the need value.

 Check whether its possible to allocate.

 If it is possible then the system is in safe state.

 Else system is not in safety state.

 Stop the process.

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

void main()

{

char job[10][10];

int time[10],avail,tem[10],temp[10]; int safe[10];

int ind=1,i,j,q,n,t;

clrscr();

printf("Enter no of jobs: ");

scanf("%d",&n);

Page 61

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

for(i=0;i<n;i++)

{

printf("Enter name and time: ");

scanf("%s%d",&job[i],&time[i]);

}

printf("Enter the available resources:");

scanf("%d",&avail);

for(i=0;i<n;i++)

{

temp[i]=time[i];

tem[i]=i;

}

for(i=0;i<n;i++)

for(j=i+1;j<n;j++)

{

if(temp[i]>temp[j])

{

t=temp[i];

temp[i]=temp[j];

temp[j]=t; t=tem[i];

tem[i]=tem[j];

tem[j]=t;

}

}

for(i=0;i<n;i++)

{

q=tem[i];

if(time[q]<=avail)

{

safe[ind]=tem[i];

avail=avail-tem[q];

printf("%s",job[safe[ind]]);

ind++;

}

else

{

printf("No safe sequence\n");

}

}

printf("Safe sequence is:");

for(i=1;i<ind; i++)

printf("%s %d\n",job[safe[i]],time[safe[i]]);

getch();

Page 62

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 OUTPUT:

Enter no of jobs:4

Enter name and time: A 1

Enter name and time: B 4

Enter name and time: C 2

Enter name and time: D 3

Enter the available resources: 20

Safe sequence is: A 1, C 2, D 3, B 4.

Page 63

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

EXPERIMENT.NO 11

AIM:

 To Write a C program to simulate disk scheduling algorithms

a) FCFS b) SCAN c) C-SCAN

DESCRIPTION:

One of the responsibilities of the operating system is to use the hardware efficiently. For the

disk drives, meeting this responsibility entails having fast access time and large disk

bandwidth. Both the access time and the bandwidth can be improved by managing the order in

which disk I/O requests are serviced which is called as disk scheduling. The simplest form of

disk scheduling is, of course, the first-come, first-served (FCFS) algorithm. This algorithm is

intrinsically fair, but it generally does not provide the fastest service. In the SCAN algorithm,

the disk arm starts at one end, and moves towards the other end, servicing requests as it reaches

each cylinder, until it gets to the other end of the disk. At the other end, the direction of head

movement is reversed, and servicing continues. The head continuously scans back and forth

across the disk. C-SCAN is a variant of SCAN designed to provide a more uniform wait time.

Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing requests

along the way. When the head reaches the other end, however, it immediately returns to the

beginning of the disk without servicing any requests on the return trip

PROGRAM:

A) FCFS DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], n, I, j, tohm[20], tot=0; float avhm;

clrscr();

printf(“enter the no.of tracks”);

scanf(“%d”,&n);

printf(“enter the tracks to be traversed”);

for(i=2;i<n+2;i++)

scanf(“%d”,&t*i+);

for(i=1;i<n+1;i++)

{

tohm[i]=t[i+1]-t[i];

if(tohm[i]<0)

tohm[i]=tohm[i]*(-1);

}

for(i=1;i<n+1;i++)

tot+=tohm[i];

avhm=(float)tot/n;

printf(“Tracks traversed\tDifference between tracks\n”);

for(i=1;i<n+1;i++)

printf(“%d\t\t\t%d\n”,t*i+,tohm*i+);

Page 64

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

printf("\nAverage header movements:%f",avhm);

getch();

}

Page 65

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT
Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT
Tracks traversed Difference between tracks

55 45

58 3

60 2

70 10

18 52

90 72

150 60

160 10

184 24

Average header movements:30.888889

Page 66

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

B) SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

t[0]=0;t[1]=h;

printf("enter the tracks");

for(i=2;i<n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<n+2;i++)

{

for(j=0;j<(n+2)-i-1;j++)

{

if(t[j]>t[j+1])

{

temp=t[j];

t[j]=t[j+1];

t[j+1]=temp;

} } }

for(i=0;i<n+2;i++)

if(t[i]==h)

j=i;k=i;

p=0;

while(t[j]!=0)

{

atr[p]=t[j]; j--;

p++;

}

atr[p]=t[j];

for(p=k+1;p<n+2;p++,k++)

atr[p]=t[k+1];

for(j=0;j<n+1;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("\nAverage header movements:%f",(float)sum/n);

getch();}

Page 67

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT
Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT

Tracks traversed Difference between tracks

150 50

160 10

184 24

90 94

70 20

60 10

58 2

55 3

18 37

Average header movements: 27.77

Page 68

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

C) C-SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

t[0]=0;t[1]=h;

printf("enter total tracks");

scanf("%d",&tot);

t[2]=tot-1;

printf("enter the tracks");

for(i=3;i<=n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<=n+2;i++)

for(j=0;j<=(n+2)-i-1;j++)

if(t[j]>t[j+1])

{

for(i=0;i<=n+2;i++)

if(t[i]==h);

j=i;break;

temp=t[j];

t[j]=t[j+1];

t[j+1]=temp

}

p=0;

while(t[j]!=tot-1)

{

atr[p]=t[j];

j++;

p++;

}

atr[p]=t[j];

p++;

i=0;

while(p!=(n+3) && t[i]!=t[h])

{

atr[p]=t[i]; i++;

p++;

}

Page 69

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

for(j=0;j<n+2;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("total header movements%d",sum);

printf("avg is %f",(float)sum/n);

getch();

}

Page 70

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

INPUT
Enter the track position : 55 58 60 70 18 90 150 160 184

Enter starting position : 100

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

OUTPUT

Tracks traversed Difference Between tracks

150 50

160 10

184 24

18 240

55 37

58 3

60 2

70 10

90 20

Average seek time : 35.7777779

Programs beyond Syllabus

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

AIM:

To write C Programs using the following system calls of UNIX operating system fork, exec,

getpid, exit, wait, close, stat, opendir, readdir.

1. PROGRAM FOR SYSTEM CALLS OF UNIX OPERATING SYSTEMS (OPENDIR,

READDIR, CLOSEDIR)

ALGORITHM:

STEP 1: Start the program.

STEP 2: Create struct dirent.

STEP 3: declare the variable buff and pointer dptr.

STEP 4: Get the directory name.

STEP 5: Open the directory.

STEP 6: Read the contents in directory and print it.

STEP 7: Close the directory.

PROGRAM:

#include<stdio.h>

#include<dirent.h>

struct dirent *dptr;

int main(int argc, char *argv[])

{

char buff[100];

DIR *dirp;

printf(“\n\n ENTER DIRECTORY NAME”);

scanf(“%s”, buff);

if((dirp=opendir(buff))==NULL)

{

printf(“The given directory does not exist”);

exit(1);

}

while(dptr=readdir(dirp))

{

printf(“%s\n”,dptr->d_name);

}

closedir(dirp);

}

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

2. PROGRAM FOR SYSTEM CALLS OF UNIX OPERATING SYSTEM

(fork, getpid, exit)

ALGORITHM:

STEP 1: Start the program.

STEP 2: Declare the variables pid,pid1,pid2.

STEP 3: Call fork() system call to create process.

STEP 4: If pid==-1, exit.

STEP 5: Ifpid!=-1 , get the process id using getpid().

STEP 6: Print the process id.

STEP 7:Stop the program

PROGRAM:

#include<stdio.h>

#include<unistd.h>

main()

{

int pid,pid1,pid2;

pid=fork();

if(pid==-1)

{

printf(“ERROR IN PROCESS CREATION \n”);

exit(1);

}

if(pid!=0)

{

pid1=getpid();

printf(“\n the parent process ID is %d\n”, pid1);

}

else

{

pid2=getpid();

printf(“\n the child process ID is %d\n”, pid2);

}

}

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

AIM:

To write C programs to simulate UNIX commands like cp, ls, grep.

3.Program for simulation of cp unix commands

ALGORITHM:

STEP1: Start the program
STEP 2:Declare the variables ch, *fp, sc=0

STEP3: Open the file in read mode

STEP 4: Get the character

STEP 5: If ch== “ “ then increment sc value by one

STEP 6: Print no of spaces

STEP 7:Close the file

PROGRAM:

#include<fcntl.h>

#include<unistd.h>

#include<stdio.h>

main(int argc,char *argv[])

{
FILE *fp;

char ch;

int sc=0;

fp=fopen(argv[1],"r");

if(fp==NULL)

printf("unable to open a file",argv[1]);

else

{

while(!feof(fp))

{

ch=fgetc(fp);

if(ch==' ')

sc++;

}

printf("no of spaces %d",sc);

printf("\n");

fclose(fp);

}

}

Page 75

 KG Reddy College of Engineering & Technology
 (Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad)

 Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-50150

 4..PROGRAM FOR SIMULATION OF LS UNIX COMMANDS

ALGORTIHM:

STEP1 : Start the program

STEP2 : Open the directory with directory object dp

STEP3 : Read the directory content and print it.

STEP4: Close the directory.

PROGRAM:

#include<stdio.h>

#include<dirent.h> main(int argc,

char **argv)

{

DIR *dp;

struct dirent *link; dp=opendir(argv[1]);

printf(“\n contents of the directory %s are \n”, argv[1]); while((link=readdir(dp))!=0)

printf(“%s”,link->d_name);

closedir(dp);

}

	COMPUTER SCIENCE AND ENGINEERING
	KG REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	MISSION:
	VISION
	MISSION

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	Program Educational Objectives (PEOs):

	OPERATING SYSTEMS LAB MANUAL (R18A0583)
	DESCRIPTION:
	ALGORITHM:
	SOURCE CODE:
	B.SHORTEST JOB FIRST:
	DESCRIPTION: (1)
	ALGORITHM: (1)
	SOURCE CODE :
	C.ROUND ROBIN:
	DESCRIPTION: (2)
	ALGORITHM: (2)
	SOURCE CODE
	D.PRIORITY:
	DESCRIPTION: (3)
	ALGORITHM: (3)
	SOURCE CODE: (1)
	VIVA QUESTIONS
	EXPERIMENT:NO 2
	DESCRIPTION: (4)
	PROGRAM
	OUTPUT

	EXPERIMENT.NO 3
	DESCRIPTION: (5)
	PROGRAM (1)
	INPUT
	OUTPUT

	EXPERIMENT.NO 4
	MEMORY MANAGEMENT
	DESCRIPTION: (6)
	ALGORITHM: (4)
	SOURCE CODE : (1)
	B) MEMORY VARIABLE PARTIONING TYPE (MVT)
	ALGORITHM: (5)
	SOURCE CODE: (2)
	OUTPUT:
	EXPERIMENT.NO 5
	DESCRIPTION: (7)
	WORST-FIT
	BEST-FIT
	FIRST-FIT
	INPUT:

	a) FIFO b) LRU c) OPTIMAL
	ALGORITHM: (6)
	A) FIRST IN FIRST OUT SOURCE CODE :
	OUTPUT: (1)
	B) LEAST RECENTLY USED
	ALGORITHM: (7)
	SOURCE CODE : (2)
	OUTPUT: (2)
	C) OPTIMAL
	ALGORTHIM:
	SOURCE CODE: (3)
	OUTPUT: (3)
	VIVA QUESTIONS (1)
	EXPERIMENT NO. 7
	DESCRIPTION: (8)
	SOURCE CODE : (3)
	OUTPUT: (4)
	B) TWO LEVEL DIRECTORY
	Description:
	SOURCE CODE : (4)
	OUTPUT
	VIVA QUESTIONS (2)
	EXPERIMENT.NO.8
	DESCRIPTION: (9)
	ALGORITHM: (8)
	SOURCE CODE : (5)
	OUTPUT: (5)
	B) INDEXED:
	DESCRIPTION: (10)
	ALGORITHM: (9)
	SOURCE CODE : (6)
	C) LINKED:
	DESCRIPTION: (11)
	ALGORTHIM: (1)
	SOURCE CODE : (7)
	OUTPUT: (6)
	VIVA QUESTIONS (3)
	EXPERIMENT.NO 9
	DESCRIPTION: (12)
	ALGORITHM: (10)
	SOURCE CODE : (8)
	OUTPUT (1)
	VIVA QUESTIONS (4)
	EXPERIMENT.NO 10
	DEAD LOCKPREVENTION
	DESCRIPTION: (13)
	Banker‘s Algorithm:
	ALGORITHM: (11)
	SOURCE CODE : (9)
	OUTPUT: (7)
	EXPERIMENT.NO 11
	DESCRIPTION: (14)
	PROGRAM:
	INPUT
	OUTPUT

	B) SCAN DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

	C) C-SCAN DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT
	1. PROGRAM FOR SYSTEM CALLS OF UNIX OPERATING SYSTEMS (OPENDIR, READDIR, CLOSEDIR)

	PROGRAM: (1)
	ALGORITHM:

	PROGRAM: (2)
	AIM:

	3.Program for simulation of cp unix commands ALGORITHM:
	PROGRAM:

	4..PROGRAM FOR SIMULATION OF LS UNIX COMMANDS

