
Programming and Problem

Solving

Mr Md Afzal

Assistant Professor-CSE

Introduction
In this course, we learn how to use the

computer effectively to solve problems

Let us go over the syllabus and then

start the introductory topics.

Syllabus
Textbook:
Programming and Problem Solving With C++,3rd Edition

Nell Dale, Chip Weems amd Mark Headington, Jones and Bartlett 2002

Grading:
– HW-I 10%

– HW-II 10%

– HW-III 10%

– HW-IV 10%

– Demos and class work 10%

– Exam-I In-Class 25%

– Exam-II In-Class 25%

– NOTE: Exam-I covers all the topics until last lecture before the exam.

Exam-II covers all topics from first lecture after Exam-I until the last

lecture before exam week.

Topics
– Introduction to Computers

– Overview of C++

– Top Down Design

– Selection

– Repetition

– Function Arguments

– Formatting and Files

– Arrays and Structures

– User defined classes

– Recursion

5

Chapter 1 Topics

Computer Programming

Programming Life-Cycle Phases

Creating an Algorithm

Machine Language vs. High Level Languages

Compilation and Execution Processes

C++ History

Computer Components

Computing Profession Ethics

Problem-Solving Techniques

6

What is Computer Programming?

It is the process of planning a

sequence of steps (called

instructions) for a computer to

follow.
STEP 1

STEP 2

STEP 3

. . .

7

Programming Life Cycle Phases

1 Problem-Solving

2 Implementation

3 Maintenance

8

Problem-Solving Phase

ANALYZE the problem and SPECIFY

what the solution must do

develop a GENERAL SOLUTION

(ALGORITHM) to solve the problem

VERIFY that your solution really

solves the problem

9

Sample Problem

A programmer needs an algorithm to

determine an employee’s weekly

wages. How would the calculations

be done by hand?

10

One Employee’s Wages

In one week an employee works 52 hours at

the hourly pay rate of $24.75. Assume a 40.0

hour normal work week and an overtime pay

rate factor of 1.5

What are the employee’s wages?

40 x $ 24.75 = $ 990.00

12 x 1.5 x $ 24.75 = $ 445.50

$ 1435.50

11

If hours are more than 40.0, then

wages = (40.0 * payRate) + (hours - 40.0) * 1.5 *payRate

otherwise,

wages = hours * payRate

Weekly Wages, in General

RECALL EXAMPLE

(40 x $ 24.75) + (12 x 1.5 x $ 24.75) = $1435.50

12

An Algorithm is . . .

a step-by-step procedure for solving a

problem in a finite amount of time.

13

Algorithm to Determine an

Employee’s Weekly Wages

1. Get the employee’s hourly payRate

2. Get the hours worked this week

3. Calculate this week’s regular wages

4. Calculate this week’s overtime wages (if any)

5. Add the regular wages to overtime wages (if any)

to determine total wages for the week

14

What is a

Programming Language?

It is a language with strict grammar

rules, symbols, and special words

used to construct a computer

program.

15

Implementation Phase:

Program

translating your algorithm into a

programming language is called

CODING

with C++, you use

Documentation -- your written comments

Compiler -- translates your program

into machine language

Main Program -- may call subalgorithms

16

Implementation Phase: Test

TESTING your program means running

(executing) your program on the

computer, to see if it produces correct

results

if it does not, then you must find out

what is wrong with your program or

algorithm and fix it--this is called

debugging

17

Maintenance Phase

USE and MODIFY the program to

meet changing requirements or

correct errors that show up in using

it

maintenance begins when your

program is put into use and

accounts for the majority of effort on

most programs

18

Programming Life Cycle

1 Problem-Solving Phase
Analysis and Specification

General Solution (Algorithm)

Verify

2 Implementation Phase
Concrete Solution (Program)

Test

3 Maintenance Phase
Use

Maintain

19

A Tempting Shortcut?

GOAL

THINKING
CODE

REVISE
REVISE

REVISE

DEBUG

DEBUG

DEBUG

TEST

CODE

20

Memory Organization

two circuit states correspond to 0 and 1

bit (short for binary digit) refers to a single

0 or 1. Bit patterns represent both the

computer instructions and computer data

1 byte = 8 bits

1 KB = 1024 bytes

1 MB = 1024 x 1024 = 1,048,576 bytes

21

How Many Possible Digits?

binary (base 2) numbers use 2 digits:

JUST 0 and 1

decimal (base 10) numbers use 10 digits:

0 THROUGH 9

22

Machine Language

is not portable

runs only on specific type of computer

is made up of binary-coded instructions

(strings of 0s and 1s)

is the language that can be directly used by

the computer

23

High Level Languages

are portable

user writes program in language similar to

natural language

examples -- FORTRAN, COBOL, Pascal,

Ada, Modula-2, C++, Java

most are standardized by ISO/ANSI to

provide an official description of the

language

24

Three C++ Program Stages

other code

from libraries,

etc.

written in

machine

language

written in

machine

language

written in

C++

via compiler via linker

SOURCE OBJECT EXECUTABLE

myprog.cpp myprog.obj myprog.exe

25

Java Programming Language

achieves portability by using both a compiler and

an interpreter

first, a Java compiler translates a Java program into

an intermediate bytecode--not machine language

then, an interpreter program called the Java Virtual

Machine (JVM) translates a single instruction in the

bytecode program to machine language and

immediately runs it, one at a time

26

Basic Control Structures

a sequence is a series of statements that execute

one after another

selection (branch) is used to execute different

statements depending on certain conditions

Looping (repetition) is used to repeat statements

while certain conditions are met.

a subprogram is used to break the program into

smaller units

27

SEQUENCE

Statement Statement Statement . . .

28

SELECTION (branch)

IF Condition THEN Statement1 ELSE Statement2

Statement1

Statement

Statement2

Condition . . .

29

LOOP (repetition)

Statement

Condition
. . .

False

WHILE Condition DO Statement1

30

SUBPROGRAM (function)

SUBPROGRAM1 . . .

SUBPROGRAM1

a meaningful collection

of SEQUENCE,

SELECTION, LOOP,

SUBPROGRAM

31

Computer Components

Arithmetic Logic Unit

Control Unit

Auxiliary

Storage

Device
Memory Unit (RAM & Registers)

Central Processing Unit (CPU)

Input Device

Output Device

Peripherals

32

Memory Unit

is an ordered sequence of storage cells, each

capable of holding a piece of information

each cell has its own unique address

the information held can be input data,

computed values, or your program instructions.

33

Central Processing Unit

has 2 components to execute program

instructions

Arithmetic/Logic Unit performs arithmetic

operations, and makes logical comparisons.

Control Unit controls the order in which

your program instructions are executed.

34

Peripherals

are input, output, or auxiliary storage devices

attached to a computer

Input Devices include keyboard and mouse.

Output Devices include printers, video display,

LCD screens.

Auxiliary Storage Devices include disk drives,

scanners, CD-ROM and DVD-ROM drives,

modems, sound cards, speakers, and digital

cameras.

35

Some C++ History

1972 : Dennis Ritchie at Bell Labs designs C

and 90% of UNIX is then written in C

Late 70’s : OOP becomes popular

Bjarne Stroustrup at Bell Labs adds features

to C to form “C with Classes”

1983 : Name C++ first used

1998 : ISO/ANSI standardization of C++

36

Computing Profession Ethics

copy software only with permission from the

copyright holder

give credit to another programmer by name

whenever using his/her code

use computer resources only with permission

guard the privacy of confidential data

use software engineering principles to develop

software free from errors

37

What is Computer Science?

The Computing Curriculum 1991 (ACM/IEEE)

Algorithms and Data Structures

Architecture

Artificial Intelligence and Robotics

Database and Information Retrieval

Human-Computer Communication

Numerical and Symbolic Computation

Operating Systems

Programming Languages

Software Engineering

Social and Professional Context

38

Problem Solving Techniques

ASK QUESTIONS -- about the data, the

process, the output, error conditions.

LOOK FOR FAMILIAR THINGS -- certain

situations arise again and again.

SOLVE BY ANALOGY -- it may give you a

place to start.

USE MEANS-ENDS ANALYSIS -- Determine

the I/O and then work out the details.

39

More Problem Solving Techniques

DIVIDE AND CONQUER -- break up large

problems into manageable units.

BUILDING-BLOCK APPPROACH -- can you

solve small pieces of the problem?

MERGE SOLUTIONS -- instead of joining

them end to end to avoid duplicate steps.

OVERCOME MENTAL BLOCK -- by

rewriting the problem in your own words.

40

Company Payroll Case Study

A small company needs an interactive

program to figure its weekly payroll. The

payroll clerk will input data for each

employee, and each employee’s wages

and data should be saved in a secondary

file.

Display the total wages for the week on

the screen.

41

One Employee’s Wages

In one week employee ID # 4587 works 52

hours at the hourly pay rate of $24.75.

Assume a 40.0 hour normal work week and

an overtime pay rate factor of 1.5.

What are the employee’s wages?

40 x $ 24.75 = $ 990.00

12 x 1.5 x $ 24.75 = $ 445.50

$ 1435.50

42

Problem-Solving Phase

What information will be used?

INPUT DATA from outside the program

FORMULA CONSTANTS used in program

COMPUTED VALUE produced by program

OUTPUT RESULTS written to file or screen by

program

43

Problem-Solving Phase

INPUT DATA FORMULA

CONSTANTS

OUTPUT

RESULTS
Employee ID

Number

Hourly payRate

Hours worked

Normal work

hours (40.0)

Overtime pay

rate factor (1.5)

Hourly payRate

Hours worked

Wages

COMPUTED VALUE

Wages

44

If hours are more than 40.0, then

wages = (40.0 * payRate) + (hours - 40.0) * 1.5 *payRate

otherwise,

wages = hours * payRate

Week’s Wages, in General

RECALL EXAMPLE

(40 x $ 24.75) + (12 x 1.5 x $ 24.75) = $1435.50

45

Algorithm for Company

Payroll Program

initialize total company payroll to 0.0

repeat this process for each employee:

1. Get the employee’s ID empNum

2. Get the employee’s hourly payRate

3. Get the hours worked this week

4. Calculate this week’s wages

5. Add wages to total company payroll

6. Write empNum, payRate, hours, wages to file

write total company payroll on screen

46

// ***

// Payroll program

// This program computes each employee’s wages and

// the total company payroll

// ***

#include <iostream> // for keyboard/screen I/O

#include <fstream> // for file I/O

using namespace std;

void CalcPay (float, float, float&) ;

const float MAX_HOURS = 40.0; // Maximum normal hours

const float OVERTIME = 1.5; // Overtime pay factor

C++ Program

47

C++ Code Continued

int main()

{

float payRate; // Employee’s pay rate

float hours; // Hours worked

float wages; // Wages earned

float total; // Total company payroll

int empNum; // Employee ID number

ofstream payFile; // Company payroll file

payFile.open(“payfile.dat”); // Open file

total = 0.0; // Initialize total

48

cout << “Enter employee number: “; // Prompt

cin >> empNum; // Read ID number

while (empNum != 0) // While not done

{

cout << “Enter pay rate: “;

cin >> payRate ; // Read pay rate

cout << “Enter hours worked: “;

cin >> hours ; // and hours worked

CalcPay(payRate, hours, wages); // Compute wages

total = total + wages; // Add to total

payFile << empNum << payRate

<< hours << wages << endl;

cout << “Enter employee number: “;

cin >> empNum; // Read ID number

} 48

49

cout << “Total payroll is “

<< total << endl;

return 0 ; // Successful completion

}

// ***

void CalcPay (/* in */ float payRate ,

/* in */ float hours ,

/* out */ float& wages)

// CalcPay computes wages from the employee’s pay rate

// and the hours worked, taking overtime into account

{

if (hours > MAX_HOURS)

wages = (MAX_HOURS * payRate) +

(hours - MAX_HOURS) * payRate * OVER_TIME;

else

wages = hours * payRate;

} 49

