
Software Engineering:
A Perspective for 2003

Ms Kavya Mandavalli

Software Engineering: A 2003 Perspective
2

Seminar Dedication
Enrico Fermi referred to these
brilliant Hungarian scientists
as “the Martians,” based on
speculation that a spaceship
from Mars dropped them all off
in Budapest in the early
1900’s.

http://www.physics.umd.edu/robot/neumann.html
http://www.llnl.gov/PAO/photos/Tellercap.html
http://www.nobel.se/physics/laureates/1963/wigner-bio.html
http://www.physics.umd.edu/robot/evangel.html
http://www.dannen.com/chronbio.html

Software Engineering: A 2003 Perspective
3

Software Engineering Seminar

Many professionals feel that the Waterfall Model is old fashioned or
simplistic, having long ago outlived its usefulness – the very name
seems wrong, since water cannot “fall” uphill to accommodate the
backward arrows. All sorts of new models have been depicted to better
show how the “real world” works, or how software can be developed
faster, or how customers can become more engaged in the process to
improve functionality. The Spiral Model, the Evolutionary Rapid
Prototyping Model, the “V”-Shaped Model and others have emerged to
solve one issue or another. Today, most practitioners might agree that
there are so many different types of projects, a one size SLC cannot
possible fit all. The modern viewpoint is that unique projects require
unique models, or combinations of models to succeed. We will discuss
the choice of appropriate SLC models, or modified versions of SLC
models, the real baseline for beginning software engineering. We will
describe several of the more modern SLC’s (e.g. eXtreme, RUP), and
how a project manager can decide which one to use. We will also
explain what the various bodies of knowledge (e.g. PMBOK, SWEBOK)
map to our life cycles.

Software Engineering: A 2003 Perspective
4

Presentation Description

The key to managing a software development project is having a
high level road map to identify where you are on the project. The life
cycle model you adopt for your development project is this roadmap.
Using IEEE 1074, we will walk through a "standard" development life
cycle and all the supporting processes required; e.g. configuration
management, documentation, project management, software quality
assurance. Using this as the baseline we'll construct a first pass WBS
for the life cycle.

The next steps will be to customize the baseline life cycle for two
different types of development: evolutionary rapid prototyping and
commercial-of-the-shelf package selection.

To wrap up, some metrics on life cycles for web-based application
delivery.

Software Engineering: A 2003 Perspective
5

NOT the Model you want!

Code & Test

Do Until
Done

Inputs Outputs

Software Engineering: A 2003 Perspective
6

Methods

Product Development

Products

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

7

A Quick Level Set

Technology

 Application of scientific knowledge in industry

or business

Tool

 An implement or machine used to do work or

perform a task.

Method

 A manner, means or process for accomplishing

something.

Software Engineering: A 2003 Perspective
8

What’s in each segment?

Software Engineering Project Management

Methods

Products

Software Engineering: A 2003 Perspective
9

How do products happen?

Methods

Prod

ucts

Method

s

Pr
o
d
u
ct
s

Ideas

Products

Software Engineering: A 2003 Perspective
10

Project Management Mitigates the Front End Risks

Concept

Definition

Needs

Assessment

Plan

Project

Plans

Specifications

Databases

ROI

Analysis

Risk

Analysis

Analyze

Management

Plan

Market and

System

Requirements

Candidate

Architecture

Identification

Software Engineering: A 2003 Perspective
11

1) Become familiar with the various models

2) Review, analyze the type of work: development,

enhancement, maintenance, etc.

3) Review project criteria

4) Identify a minimum set of phases

5) Identify phase activities

6) Establish a minimum set of deliverables

7) Define templates and content guides for

deliverables

8) Evaluate progress and effectiveness of the life

cycle framework

9) Implement improvements

Defining Your Life Cycle Model

Software Engineering: A 2003 Perspective
12

Build and Fix

Software Engineering: A 2003 Perspective
13

Build and Fix – Good and Bad

Pros: Cons:

Works for projects

generating less than

200 LOC

One step beyond code

and test

Does not scale with

large projects

No specifications

Not a life cycle model

Software Engineering: A 2003 Perspective
14

Basic 1074 Life Cycle

Software Engineering: A 2003 Perspective
15

Full 1074 Life Cycle (1)

Software Engineering: A 2003 Perspective
16

Full 1074 Life Cycle (2)

Software Engineering: A 2003 Perspective
17

Full 1074 Life Cycle – Good and
Bad

Pros: Cons:

THE starting point for

defining you life cycle

Too much process

Contains all the life

cycle supports you

would need

Contains more than you

may reasonably use

Is a process for defining

your life cycle

Is not in and of itself a

life cycle to implement

Software Engineering: A 2003 Perspective
18

Waterfall Model

Planning

Analysis

Design

Build

Test

Deploy

Software Engineering: A 2003 Perspective
19

Waterfall Model – Good and Bad

Pros: Cons:

Easiest to understand Does not model the real

world

Easiest to instrument Too much

documentation

Enforced discipline

Document and

deliverable driven

Software Engineering: A 2003 Perspective
20

Waterfall with Prototyping

REVIEW
DETAIL DESIGN

Process Steps Process Gates Prototypes

REVIEW
REQUIREMENTS DEFINITION

REVIEW
HIGH LEVEL DESIGN

REVIEW
SYSTEM CONSTRUCTION

REVIEW
VERIFICATION & VALIDATION

REVIEW
SYSTEM DELIVERY

PROTOTYPE

1

PROTOTYPE

2

PROTOTYPE

3

POST

IMPLEMENTATION

REVIEW

Project Management Support Processes
Risk Reduction Training Planning Configuration Management Estimating Metrics Quality Assurance

Software Engineering: A 2003 Perspective
21

Prototyping Model - Pros and Cons

Pros: Cons:

Easiest to understand Not stopping the

prototyping

Easiest to instrument Prototyping becomes

early code hacking

Real world modeling

Recursion among

process steps

Document and

deliverable driven

Software Engineering: A 2003 Perspective
22

Spiral Model

Software Engineering: A 2003 Perspective
23

Spiral Good and Bad

Pros: Cons:

Emphasizes risk

reduction

Internal development of

large systems

Supports reuse High overhead costs

Maintenance and

development mesh

Requires a mature

organization

Easy look at product

with prototypes

Risk and prototyping

tools a must

Risk focused testing

Software Engineering: A 2003 Perspective
24

Rapid Application Development

Software Engineering: A 2003 Perspective
25

RAD – Good/Bad

Pros: Cons:

Lots of user interaction Users intimately involved

Early proof of concept Needs maturity of tools

and process

Incremental building Increased overhead if

too many prototypes

Tight delivery control

Poorly set expectations

Software Engineering: A 2003 Perspective
26

Requirements Waterfall Prototype Spiral RAD

Are the requirements easily
defined and/or well known?

Yes No No Yes

Can the requirements be defined
early in the cycle?

Yes No No Yes

Will the requirements change
often in the cycle?

No Yes Yes No

Is there a need to demonstrate
the requirements to achieve
definition?

No Yes Yes Yes

Is a proof of concept required to
demonstrate capability?

No Yes Yes Yes

Selecting a Life Cycle Model - Project Characteristic
Category Matrix Requirements

Software Engineering: A 2003 Perspective
27

Project Team Waterfall Prototype Spiral RAD

Are the majority of team members new
to the problem domain for the project? No Yes Yes No

Yes No Yes No

Yes No Yes No

Are the team members subject to
reassignment during the life cycle? No Yes Yes No

Is there training available for the project
team if required? No No No Yes

Selecting a Life Cycle Model - Project Characteristic
Category Matrix Project Team

Are the majority of team members new
to the technology domain for the
project?

Are the majority of team members new
to the tools used on the project?

Software Engineering: A 2003 Perspective
28

User Community Waterfall Prototype Spiral RAD

Will the availability of the user
representatives be restricted, or limited
during the life cycle?

Yes No Yes No

Are the user representatives new to
system definition?

No Yes Yes No

Are the user representatives experts in
the problem domain? No Yes No Yes

Do the users want to be involved in all
phases of the life cycle?

No Yes No Yes

Selecting a Life Cycle Model - Project Characteristic
Category Matrix User Community

Software Engineering: A 2003 Perspective
29

Project Type & Risk Waterfall Prototype Spiral RAD

Does the project identify a new product
direction for the organization? No Yes Yes No

Is the project a system integration
project? No Yes Yes Yes

Is the project an enhancement to an
existing system? No No No Yes

Is the funding for the project expected to
be stable throughout the life cycle?

Yes Yes No Yes

Is the product expected to have a long
life in the organization?

Yes No Yes No

Selecting a Life Cycle Model - Project Characteristic
Category Matrix Project Type and Risk

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

30

Two Derived Development Methods

COTs

eXtreme Programming

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

31

Before Customizing Remember the Framework

Activities …

An effective process model should define a small set of framework activities that are

always applicable, regardless of project type. The APM defines the following set of
framework activities:

I. project definition - tasks required to establish effective communication between developer and
customer(s) and to define requirements for the work to be performed

II. planning - tasks required to define resources, timelines and other project related information
and assess both technical and management risks

III. engineering and construction - tasks required to create one or more representations of the
software (can include the development of executable models, i.e., prototypes or simulations)
and to generate code and conduct thorough testing

IV. release - tasks required to install the software in its target environment, and provide customer
support (e.g., documentation and training)

V. customer use - tasks required to obtain customer feedback based on use and evaluation of the
deliverables produced during the release activity

Each of the above framework activities will occur for every project. However, the set

of tasks (we call this a task set) that is defined for each framework activity will vary
depending upon the project type (e.g., Concept Development Projects will have a

different task set than Application Enhancement Projects) and the degree of rigor
selected for the project.

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

32

… and the Umbrella Activities
In addition to the framework activities, a set of umbrella activities
persist across the entire software process. These umbrella activities
include:

software project management

formal technical reviews

software quality assurance

software configuration management

reusability management

measurement

document preparation and production

risk management

Each of these umbrella activities is defined by a set of tasks that are
adapted to the project type and degree of rigor with which software
engineering is to be applied.

http://www.rspa.com/apm/umtask01.html
http://www.rspa.com/apm/umtask02.html
http://www.rspa.com/apm/umtask03.html
http://www.rspa.com/apm/umtask04.html
http://www.rspa.com/apm/umtask06.html
http://www.rspa.com/apm/umtask07.html
http://www.rspa.com/apm/umtask05.html
http://www.rspa.com/apm/umtask08.html

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

33

COTS Application Selection (1)

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

34

COTS Life Cycle (2)

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

35

COTS Life Cycle (3)

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

36

eXtreme Programming

http://www.extremeprogramming.org/map/iteration.html
http://www.extremeprogramming.org/map/iteration.html

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

37

eXtreme Programming - the
propaganda

Light methods are adaptive rather than predictive. Heavy
methods tend to try to plan out a large part of the

software process in great detail for a long span of time,
this works well until things change. So their nature is to
resist change. The light methods, however, welcome

change. They try to be processes that adapt and thrive
on change, even to the point of changing themselves.

Light methods are people-oriented rather than process-

oriented. They explicitly make a point of trying to work
with peoples' nature rather than against them and to

emphasize that software development should be an
enjoyable activity.

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

38

eXtreme Programming - the truth :-
)

http://www.dilbert.com/comics/dilbert/archive/images/dilbert20031828970109.gif
http://www.dilbert.com/comics/dilbert/archive/images/dilbert20030146318110.gif
http://www.dilbert.com/comics/dilbert/archive/images/dilbert20030112193211.gif

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

39

Classical “Best” Effort per Phase

100% of Product Full Life Cost

Front end: 40 – 50% Back end: 50 – 60%

5% 5% 30% 30% 20% 10%

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

40

Real Web Project Metrics(1)

0

200

400

600

800

1000

1200

1400

Planning Analysis Design Implement Validate Deliver

Series1 Series2 Series3 Series4 Series5

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Planning Analysis Design Implement Validate Deliver

Series1 Series2 Series3 Series4 Series5

What is the
message here?

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

41

Real Web Project Metrics(2)

Series 1

Planning

13%
Analysis

10%

Design

16%
Implement

31%

Validate

27%

Deliver

3%

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

42

Real Web Project Metrics(3)

Series 2

Planning

6%
Analysis

9%

Design

23%Implement

56%

Deliver

2%

Validate

4%

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

43

Real Web Project Metrics(4)

Series 3

Analysis

10%

Design

23%

Implement

64%

Planning

1%
Deliver

1%
Validate

1%

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

44

Real Web Project Metrics(5)

Series 4

Design

18%

Implement

78%

Planning

2%

Analysis

1%

Validate

0%
Deliver

1%

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

45

Web Effort per Phase (Preliminary
Research)

100% of Product Full Life Cost

Front end: 40 – 50% Back end: 50 – 60%

7%
-3%

10%
-20%

16%
-14%

65%
+45%

2%
-8%

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

46

Best Practices that Work

1. Define your life cycle

2. Set up a metrics system

3. Formalize project management

4. Develop a prototyping process

5. Institute reviews and inspections

6. Implement non-invasive configuration
management

7. JAD with your customers

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

47

1) Become familiar with the various models

2) Review, analyze the type of work: development,

enhancement, maintenance, etc.

3) Review project criteria

4) Identify a minimum set of phases

5) Identify phase activities

6) Establish a minimum set of deliverables

7) Define templates and content guides for deliverables

8) Evaluate progress and effectiveness of the life cycle

framework

9) Implement improvements

Defining Your Life Cycle Model

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

48

Why a metrics system?

$-

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

$100.00

P
ro

d
u
c
tio

n
 C

o
n
tr

o
l

D
e
b
u
g

M
a
c
h
in

e
 I
n
te

g
ra

tio
n
,

a
c
c
e
p
te

d
 t
o
o
ls

In
v
e
n
tin

g

P
e
rf

o
rm

a
n
c
e
 A

n
a
ly

s
is

T
o
o
l

B
u
ild

 t
o
 s

p
e
c
,

a
c
c
e
p
te

d
 t
o
o
ls

B
u
ild

 t
o
 s

p
e
c
,
J
A

V
A

P
ro

d
u
c
tio

n
 C

o
n
tr

o
l

U
p
g
ra

d
e

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

49

Best Practices that Work

8. Evolve to an object-oriented model

9. Embrace modeling with UML

10. Build early and often

11. Build anywhere

12. Communicate, communicate,
communicate

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

50

Key Life Cycle Message

Whatever life cycle you start
with will not be the one that
will really work for you. You

have to take charge of your life
cycle, monitor it and adapt it to
your circumstances. In the end

it must become yours!

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

51

Are you secure with your
process???

Copyright © 2002 Linda and Don Shafer
Software Engineering: A 2003 Perspective

52

Linda Shafer Bio:

Linda Shafer has been working with the software industry since
1965, beginning with NASA in the early days of the space
program. Her experience includes roles of programmer,
designer, analyst, project leader, manager, and SQA/SQE. She
has worked for large and small companies, including IBM,
Control Data Corporation, Los Alamos National Laboratory,
Computer Task Group, Sterling Information Group, and
Motorola. She has also taught for and/or been in IT shops at
The University of Houston, The University of Texas at Austin,
The College of William and Mary, The Office of the Attorney
General (Texas) and Motorola University. Ms. Shafer's
publications include 25 refereed articles, and three books. She
currently works for the Software Quality Institute and co-
authored a SQI Software Engineering Series book published by
PrenHall in 2002: Quality Software Project Management. She is
on the International Press Committee of the IEEE and an
author in the Software Engineering Series books for IEEE. Her
MBA is from the University of New Mexico.

Software Engineering: A 2003 Perspective
53

Don Shafer Bio:

Don Shafer is a co-founder, corporate director and Chief Technology Officer of
Athens Group, Inc. Incorporated in June 1998, Athens Group is an employee-
owned consulting firm, integrating technology strategy and software solutions.
Prior to Athens Group, Shafer led groups developing and marketing hardware
and software products for Motorola, AMD and Crystal Semiconductor. He was
responsible for managing a $129 million-a-year PC product group that
produced the award-winning audio components. From the development of low-
level software drivers in yet-to-be-released Microsoft operating systems to the
selection and monitoring of Taiwan semiconductor fabrication facilities, Shafer
has led key product and process efforts. In the past three years he has led
Athens engineers in developing industry standard semiconductor fab
equipment software interfaces, definition of 300mm equipment integration
tools, advanced process control state machine data collectors and embedded
system control software agents. His latest patents are on joint work done with
Agilent Technologies in state-based machine control. He earned a BS degree
from the USAF Academy and an MBA from the University of Denver. Shafer’s
work experience includes positions held at Boeing and Los Alamos National
Laboratories. He is currently an adjunct professor in graduate software
engineering at Southwest Texas His faculty web site is
http://www.cs.swt.edu/~donshafer/. With two other colleagues in 2002, he
wrote Quality Software Project Management for Prentice-Hall now used in both
industry and academia. Currently he is working on an SCM book for the IEEE
Software Engineering Series.

